[Frontiers in Bioscience, Landmark, 25, 1925-1973, June 1, 2020]

New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR

Kenneth Maiese1

1Cellular and Molecular Signaling, New York, New York 10022

TABLE OF CONTENTS

1. Abstract
2. Introduction: The global impact of metabolic disease and diabetes mellitus
    2.1. Non-communicable diseases
    2.2. Metabolic disease and diabetes mellitus
3. Novel avenues to target metabolic Diesease and diabetes mellitus
4. The vitamin nicotinamide
    4.1. Production and metabolism of nicotinamide
    4.2. Nicotinamide, normal physiology, and disease states
5. Nicotinamide and metabolic dysfunction
    5.1. Nicotinamide and diabetes mellitus
    5.2. Nicotinamide and maintenance of mitochondrial function
6. Nicotinamide, pathways of cell death, and autophagy
    6.1. Apoptotic cell death
    6.2. Autophagy
7. Nicotinamide and the mechanisitic target of rapamycin
    7.1. Nicotinamide and mTOR
    7.2. mTOR as a component of mTORC1
    7.3. mTOR as a component of mTORC2
    7.4. mTOR and AMP activated protein kinase
8. Nicotinamide, mTOR, AMPK, and metabolic disorders
    8.1. mTOR and metabolic function
    8.2. Nicotinamide and the downstream pathways of mTOR
    8.3. Nicotinamide and the necessary modulation of autophagy with mTOR
9. Future Perspectives for nicotinamide
10. Acknowledgments
11. References

1. ABSTRACT

Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to
provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic β-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.

11. REFERENCES

1. World Health Organization: Description of the global burden of NCDs, their risk factors and determinants. Global status report on noncommunicable diseases 2010(April), 1-176 (2011)

2. World Health Organization: Global action plan on the public health response to dementia 2017-2025, 1-44 (2017)

3. K. Maiese: Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res, 15(4) (2018)
DOI: 10.2174/1567202616666181128120003

4. K. Maiese: Cutting through the Complexities of mTOR for the Treatment of Stroke. Curr Neurovasc Res, 11(2), 177-186 (2014)

5. A. M. Minino: Death in the United States, 2011. NCHS Data Brief(115), 1-8 (2013)

6. A. Hayutin: Global demographic shifts create challenges and opportunities. PREA Quarterly, (Fall), 46-53 (2007)

7. K. Maiese: SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells, 7(2), 235-42 (2015)
DOI: 10.4252/wjsc.v7.i2.235

8. K. Maiese: Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res, 12(2), 173-88 (2015)

9. E. Diamanti-Kandarakis, M. Datillo, D. Macut, L. H. Duntas, E. Gonos, D. Goulis, C. Kanaka-Gantenbein, M. Kapetanou, E. G. Koukkou, I. Lambrinoudaki, M. Michalaki, S. Nader-Eftekhari, R. Pasquali, M. Peppa, M. Tzanela, E. Vassilatou and A. Vryonidou: Mechanisms in Endocrinology: Aging and Anti-aging Endocrinology: A Combo - Endocrinology Overview. Eur J Endocrinol, 176(6), R283-R308 (2017)
DOI: 10.1530/eje-16-1061

10. D. Y. Fann, G. Y. Ng, L. Poh and T. V. Arumugam: Positive effects of intermittent fasting in ischemic stroke. Exp Gerontol, 89, 93-102 (2017)
DOI: 10.1016/j.exger.2017.01.014

11. O. Lushchak, O. Strilbytska, V. Piskovatska, K. B. Storey, A. Koliada and A. Vaiserman: The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev, 164, 127-138 (2017)
DOI: 10.1016/j.mad.2017.03.005

12. K. Maiese: Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res, 14(3), 299-304 (2017)
DOI: 10.2174/1567202614666170718092010

13. R. Stefanatos and A. Sanz: The role of mitochondrial ROS in the aging brain. FEBS Lett, 592(5), 743-758 (2018)
DOI: 10.1002/1873-3468.12902

14. V. V. Klimontov, D. M. Bulumbaeva, O. N. Fazullina, A. P. Lykov, N. P. Bgatova, N. B. Orlov, V. I. Konenkov, A. F. H. Pfeiffer, O. Pivovarova-Ramich and N. Rudovich: Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal (2019)
DOI: 10.1007/s12079-019-00536-4

15. K. Maiese: Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res, 11(3), 372-85 (2016)
DOI: 10.4103/1673-5374.179032

16. K. Maiese: Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res, 14(5), 773-774 (2019)
DOI: 10.4103/1673-5374.249224

17. International Diabetes Federation: Diabetes. IDF Diabetes Atlas(9th Edition) (2019)

18. Centers for Medicare and Medicaid Services: National Health Expenditure Projections 2018-2027. www.cms.gov (2019)

19. S. R. Haldar, A. Chakrabarty, S. Chowdhury, A. Haldar, S. Sengupta and M. Bhattacharyya: Oxidative stress-related genes in type 2 diabetes: association analysis and their clinical impact. Biochem Genet, 53(4-6), 93-119 (2015)
DOI: 10.1007/s10528-015-9675-z

20. G. Jia, A. R. Aroor, L. A. Martinez-Lemus and J. R. Sowers: Invited Review: Over-nutrition, mTOR Signaling and Cardiovascular Diseases. Am J Physiol Regul Integr Comp Physiol, 307(10), R1198-206 (2014)
DOI: 10.1152/ajpregu.00262.2014

21. K. Maiese: New Insights for Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev, 2015(2015:875961) (2015)
DOI: 10.1155/2015/875961

22. Q. Ye and J. F. Fu: Paediatric type 2 diabetes in China-Pandemic, progression, and potential solutions. Pediatr Diabetes, 19(1) (2018)
DOI: 10.1111/pedi.12517

23. M. I. Harris and R. C. Eastman: Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab Res Rev, 16(4), 230-6 (2000)

24. K. Maiese: mTOR: Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus. World J Diabetes, 6(2), 217-24 (2015)
DOI: 10.4239/wjd.v6.i2.217

25. K. Maiese, Z. Z. Chong and Y. C. Shang: Mechanistic insights into diabetes mellitus and oxidative stress. Curr Med Chem, 14(16), 1729-38 (2007)

26. I. Barchetta, F. A. Cimini, G. Ciccarelli, M. G. Baroni and M. G. Cavallo: Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest (2019)
DOI: 10.1007/s40618-019-01052-3

27. K. Maiese: Erythropoietin and diabetes mellitus. World J Diabetes, 6(14), 1259-73 (2015)
DOI: 10.4239/wjd.v6.i14.1259

28. A. R. Wang, X. Q. Yan, C. Zhang, C. Q. Du, W. J. Long, D. Zhan, J. Ren and X. P. Luo: Characterization of Wnt1-inducible Signaling Pathway Protein-1 in Obese Children and Adolescents. Curr Med Sci, 38(5), 868-874 (2018)
DOI: 10.1007/s11596-018-1955-5

29. K. Maiese, Z. Z. Chong, Y. C. Shang and J. Hou: Novel Avenues of Drug Discovery and Biomarkers for Diabetes Mellitus. J Clin Pharmacol, 51(2), 128-52 (2011)

30. M. Cernea, W. Tang, H. Guan and K. Yang: Wisp1 mediates Bmp3-stimulated mesenchymal stem cell proliferation. J Mol Endocrinol, 56(1), 39-46 (2016)
DOI: 10.1530/jme-15-0217

31. I. Curjuric, M. Imboden, P. O. Bridevaux, M. W. Gerbase, M. Haun, D. Keidel, A. Kumar, M. Pons, T. Rochat, T. Schikowski, C. Schindler, A. von Eckardstein, F. Kronenberg and N. M. Probst-Hensch: Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline. Age (Dordr), 38(3), 52 (2016)
DOI: 10.1007/s11357-016-9917-y

32. J. H. Hill, C. Solt and M. T. Foster: Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig (2018)
DOI: 10.1515/hmbci-2018-0012

33. Z. Liu, L. Gan, T. Zhang, Q. Ren and C. Sun: Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice. J Pineal Res, 64(1), 12455 (2018)
DOI: 10.1111/jpi.12455

34. K. Maiese: Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. J Transl Sci, 1(3), 83-85 (2016)

35. J. Mehta, S. Rayalam and X. Wang: Cytoprotective Effects of Natural Compounds against Oxidative Stress. Antioxidants (Basel), 7(10) (2018)
DOI: 10.3390/antiox7100147

36. M. Albiero, N. Poncina, M. Tjwa, S. Ciciliot, L. Menegazzo, G. Ceolotto, S. Vigili de Kreutzenberg, R. Moura, M. Giorgio, P. Pelicci, A. Avogaro and G. P. Fadini: Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes, 63(4), 1353-65 (2014)
DOI: 10.2337/db13-0894

37. M. B. Gomes and C. A. Negrato: Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr, 6(1), 80 (2014)
DOI: 10.1186/1758-5996-6-80

38. A. Gomez-Brouchet, N. Blaes, L. Mouledous, O. Fourcade, I. Tack, B. Frances, J. P. Girolami and V. Minville: Beneficial effects of levobupivacaine regional anaesthesia on postoperative opioid induced hyperalgesia in diabetic mice. J Transl Med, 13(1), 208 (2015)
DOI: 10.1186/s12967-015-0575-0

39. L. Caberlotto, T. P. Nguyen, M. Lauria, C. Priami, R. Rimondini, S. Maioli, A. Cedazo-Minguez, G. Sita, F. Morroni, M. Corsi and L. Carboni: Cross-disease analysis of Alzheimer's disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci Rep, 9(1), 3965 (2019)
DOI: 10.1038/s41598-019-39828-5

40. M. Su, K. Naderi, N. Samson, I. Youssef, L. Fulop, Z. Bozso, S. Laroche, B. Delatour and S. Davis: Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Mol Neurobiol (2019)
DOI: 10.1007/s12035-019-1475-8

41. K. Maiese, Z. Z. Chong, Y. C. Shang and J. Hou: FoxO proteins: cunning concepts and considerations for the cardiovascular system. Clin Sci (Lond), 116(3), 191-203 (2009)
DOI: 10.1042/CS20080113

42. P. C. Tang, Y. F. Ng, S. Ho, M. Gyda and S. W. Chan: Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res, 90, 88-115 (2014)
DOI: 10.1016/j.phrs.2014.08.001

43. L. Xiang, P. N. Mittwede and J. S. Clemmer: Glucose Homeostasis and Cardiovascular Alterations in Diabetes. Compr Physiol, 5(4), 1815-39 (2015)
DOI: 10.1002/cphy.c150001

44. Y. J. Xu, P. S. Tappia, N. S. Neki and N. S. Dhalla: Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev, 19(1), 113-21 (2014)
DOI: 10.1007/s10741-013-9379-6

45. T. Yao, T. Fujimura, K. Murayama, K. Okumura and Y. Seko: Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic beta-Cells. Cells, 6(4) (2017)
DOI: 10.3390/cells6040035

46. M. Hadamitzky, A. Herring, J. Kirchhof, I. Bendix, M. J. Haight, K. Keyvani, L. Luckemann, M. Unteroberdorster and M. Schedlowski: Repeated systemic treatment with rapamycin affects behavior and amygdala protein expression in rats. Int J Neuropsychopharmacol (2018)
DOI: 10.1093/ijnp/pyy017

47. Z. M. Ignacio, G. Z. Reus, C. O. Arent, H. M. Abelaira, M. R. Pitcher and J. Quevedo: New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol, 82(5), 1280-1290 (2016)
DOI: 10.1111/bcp.12845

48. M. Di Rosa and L. Malaguarnera: Chitotriosidase: A New Inflammatory Marker in Diabetic Complications. Pathobiology, 83(4), 211-9 (2016)
DOI: 10.1159/000443932

49. K. Maiese, Z. Z. Chong, J. Hou and Y. C. Shang: Erythropoietin and oxidative stress. Curr Neurovasc Res, 5(2), 125-42 (2008)

50. J. Tulsulkar, S. E. Nada, B. D. Slotterbeck, M. F. McInerney and Z. A. Shah: Obesity and hyperglycemia lead to impaired post-ischemic recovery after permanent ischemia in mice. Obesity (Silver Spring), 24(2), 417-23 (2015)
DOI: 10.1002/oby.21388

51. F. H. Xiao, Y. H. He, Q. G. Li, H. Wu, L. H. Luo and Q. P. Kong: A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes. PLoS One, 10(3), e0120388 (2015)
DOI: 10.1371/journal.pone.0120388

52. L. Arildsen, J. V. Andersen, H. S. Waagepetersen, J. B. D. Nissen and M. Sheykhzade: Hypermetabolism and impaired endothelium-dependent vasodilation in mesenteric arteries of type 2 diabetes mellitus db/db mice. Diab Vasc Dis Res, 16(6), 1479164119865885 (2019)
DOI: 10.1177/1479164119865885

53. S. Ding, Y. Zhu, Y. Liang, H. Huang, Y. Xu and C. Zhong: Circular RNAs in Vascular Functions and Diseases. Adv Exp Med Biol, 1087, 287-297 (2018)
DOI: 10.1007/978-981-13-1426-1_23

54. P. B. Pal, H. Sonowal, K. Shukla, S. K. Srivastava and K. V. Ramana: Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-alpha1/mTOR pathway. J Mol Endocrinol (2019)
DOI: 10.1530/jme-19-0080

55. N. Alexandru, D. Popov and A. Georgescu: Platelet dysfunction in vascular pathologies and how can it be treated. Thromb Res, 129(2), 116-26 (2012)
DOI: 10.1016/j.thromres.2011.09.026

56. S. C. Chiu, C. Y. Chao, E. I. Chiang, J. N. Syu, R. L. Rodriguez and F. Y. Tang: N-3 polyunsaturated fatty acids alleviate high glucose-mediated dysfunction of endothelial progenitor cells and prevent ischemic injuries both in vitro and in vivo. J Nutr Biochem, 42, 172-181 (2017)
DOI: 10.1016/j.jnutbio.2017.01.009

57. K. Maiese: Disease onset and aging in the world of circular RNAs. J Transl Sci, 2(6), 327-329 (2016)

58. K. Maiese, Z. Z. Chong, Y. C. Shang and J. Hou: Rogue proliferation versus restorative protection: where do we draw the line for Wnt and forkhead signaling? Expert Opin Ther Targets, 12(7), 905-16 (2008)
DOI: 10.1517/14728222.12.7.9.05

59. K. Maiese, F. Li, Z. Z. Chong and Y. C. Shang: The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther, 118(1), 58-81 (2008)
DOI: S0163-7258(08)00017-X

60. N. Perez-Hernandez, G. Vargas-Alarcon, R. Posadas-Sanchez, N. Martinez-Rodriguez, C. A. Tovilla-Zarate, A. A. Rodriguez-Cortes, O. Perez-Mendez, R. Blachman-Braun and J. M. Rodriguez-Perez: PHACTR1 Gene Polymorphism Is Associated with Increased Risk of Developing Premature Coronary Artery Disease in Mexican Population. Int J Environ Res Public Health, 13(8) (2016)
DOI: 10.3390/ijerph13080803

61. J. T. Thackeray, J. Radziuk, M. E. Harper, E. J. Suuronen, K. J. Ascah, R. S. Beanlands and J. N. Dasilva: Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol, 10, 75 (2011)
DOI: 10.1186/1475-2840-10-75

62. K. Maiese: Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res, 10(4), 518-528 (2015)

63. M. Mishra, A. J. Duraisamy and R. A. Kowluru: Sirt1- A Guardian of the Development of Diabetic Retinopathy. Diabetes (2018)
DOI: 10.2337/db17-0996

64. M. Ponnalagu, M. Subramani, C. Jayadev, R. Shetty and D. Das: Retinal pigment epithelium-secretome: A diabetic retinopathy perspective. Cytokine, 95, 126-135 (2017)
DOI: 10.1016/j.cyto.2017.02.013

65. D. B. Kell and E. Pretorius: No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc (2018)
DOI: 10.1111/brv.12407

66. X. Lin and N. Zhang: Berberine: Pathways to protect neurons. Phytother Res (2018)
DOI: 10.1002/ptr.6107

67. K. Maiese: FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus. Curr Neurovasc Res, 12(4), 404-413 (2015)

68. K. Maiese, Z. Z. Chong, Y. C. Shang and S. Wang: Translating cell survival and cell longevity into treatment strategies with SIRT1. Rom J Morphol Embryol, 52(4), 1173-85 (2011)

69. L. Woodhams and H. Al-Salami: The roles of bile acids and applications of microencapsulation technology in treating Type 1 diabetes mellitus. Ther Deliv, 8(6), 401-409 (2017)
DOI: 10.4155/tde-2017-0010

70. Y. Zhao, N. A. Scott, S. Fynch, L. Elkerbout, W. W. Wong, K. D. Mason, A. Strasser, D. C. Huang, T. W. Kay and H. E. Thomas: Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia, 58(1), 140-148 (2015)
DOI: 10.1007/s00125-014-3407-5

71. T. Guo, T. Liu, Y. Sun, X. Liu, R. Xiong, H. Li, Z. Li, Z. Zhang, Z. Tian and Y. Tian: Sonodynamic therapy inhibits palmitate-induced beta cell dysfunction via PINK1/Parkin-dependent mitophagy. Cell Death Dis, 10(6), 457 (2019)
DOI: 10.1038/s41419-019-1695-x

72. N. Klimova and T. Kristian: Multi-targeted Effect of Nicotinamide Mononucleotide on Brain Bioenergetic Metabolism. Neurochem Res (2019)
DOI: 10.1007/s11064-019-02729-0

73. K. Maiese, Z. Z. Chong, Y. C. Shang and S. Wang: Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov, 8(1), 35-48 (2013)
DOI: 10.1517/17460441.2013.736485

74. M. A. M. Othman, E. Rajab, A. AlMubarak, M. AlNaisar, N. Bahzad and A. Kamal: Erythropoietin Protects Against Cognitive Impairment and Hippocampal Neurodegeneration in Diabetic Mice. Behav Sci (Basel), 9(1) (2018)
DOI: 10.3390/bs9010004

75. S. Yelumalai, N. Giribabu, K. Karim, S. Z. Omar and N. B. Salleh: In vivo administration of quercetin ameliorates sperm oxidative stress, inflammation, preserves sperm morphology and functions in streptozotocin-nicotinamide induced adult male diabetic rats. Arch Med Sci, 15(1), 240-249 (2019)
DOI: 10.5114/aoms.2018.81038

76. S. G. Coca, F. Ismail-Beigi, N. Haq, H. M. Krumholz and C. R. Parikh: Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med, 172(10), 761-9 (2012)
DOI: 10.1001/archinternmed.2011.2230

77. J. H. Lee, J. H. Lee, M. Jin, S. D. Han, G. R. Chon, I. H. Kim, S. Kim, S. Y. Kim, S. B. Choi and Y. H. Noh: Diet control to achieve euglycemia induces significant loss of heart and liver weight via increased autophagy compared with ad libitum diet in diabetic rats. Exp Mol Med, 46, e111 (2014)
DOI: 10.1038/emm.2014.52

78. K. Maiese, Z. Z. Chong, J. Hou and Y. C. Shang: The vitamin nicotinamide: translating nutrition into clinical care. Molecules, 14(9), 3446-85 (2009)
DOI: 14093446

79. N. Braidy and Y. Liu: NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp Gerontol, 110831 (2020)
DOI: 10.1016/j.exger.2020.110831

80. A. Rex and H. Fink: Pharmacokinetic aspects of reduced nicotinamide adenine dinucleotide (NADH) in rats. Front Biosci, 13, 3735-41 (2008)
DOI: 2962

81. F. Li, Z. Z. Chong and K. Maiese: Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide. Front Biosci, 9, 2500-2520 (2004)

82. K. Maiese and Z. Z. Chong: Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci, 24(5), 228-32 (2003)

83. T. M. Jackson, J. M. Rawling, B. D. Roebuck and J. B. Kirkland: Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J Nutr, 125(6), 1455-61 (1995)

84. M. Wojcik, H. F. Seidle, P. Bieganowski and C. Brenner: Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste. J Biol Chem, 281(44), 33395-402 (2006)
DOI: M607111200

85. J. A. Khan, F. Forouhar, X. Tao and L. Tong: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets, 11(5), 695-705 (2007)
DOI: 10.1517/14728222.11.5.6.95

86. J. A. Khan, S. Xiang and L. Tong: Crystal structure of human nicotinamide riboside kinase. Structure, 15(8), 1005-13 (2007)
DOI: S0969-2126(07)00251-1

87. F. Li, Z. Z. Chong and K. Maiese: Cell Life Versus Cell Longevity: The Mysteries Surrounding the NAD(+) Precursor Nicotinamide. Curr Med Chem, 13(8), 883-95 (2006)

88. K. Maiese: Triple play: Promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother, 62(4), 218-232 (2008)
DOI: S0753-3322(08)00026-7

89. G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli and S. Ruggieri: Enzymology of NAD+ homeostasis in man. Cell Mol Life Sci, 61(1), 19-34 (2004)

90. S. J. Lin and L. Guarente: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol, 15(2), 241-6 (2003)

91. G. J. Hageman and R. H. Stierum: Niacin, poly(ADP-ribose) polymerase-1 and genomic stability. Mutat Res, 475(1-2), 45-56 (2001)

92. C. Canto, R. H. Houtkooper, E. Pirinen, D. Y. Youn, M. H. Oosterveer, Y. Cen, P. J. Fernandez-Marcos, H. Yamamoto, P. A. Andreux, P. Cettour-Rose, K. Gademann, C. Rinsch, K. Schoonjans, A. A. Sauve and J. Auwerx: The NAD(+) Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metab, 15(6), 838-47 (2012)
DOI: 10.1016/j.cmet.2012.04.022

93. Z. Qi, J. Xia, X. Xue, Q. He, L. Ji and S. Ding: Long-term treatment with nicotinamide induces glucose intolerance and skeletal muscle lipotoxicity in normal chow-fed mice: compared to diet-induced obesity. J Nutr Biochem, 36, 31-41 (2016)
DOI: 10.1016/j.jnutbio.2016.07.005

94. D. A. Shear, C. E. Dixon, H. M. Bramlett, S. Mondello, W. D. Dietrich, Y. Deng-Bryant, K. E. Schmid, K. K. Wang, R. L. Hayes, J. T. Povlishock, P. M. Kochanek and F. C. Tortella: Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma, 33(6), 523-37 (2016)
DOI: 10.1089/neu.2015.4115

95. H. N. Jayaram, P. Kusumanchi and J. A. Yalowitz: NMNAT Expression and its Relation to NAD Metabolism. Curr Med Chem, 18(13), 1962-72 (2011)

96. Y. Feng, Y. Wang, C. Jiang, Z. Fang, Z. Zhang, X. Lin, L. Sun and W. Jiang: Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells. Life Sci (2017)
DOI: 10.1016/j.lfs.2017.06.003

97. C. A. Kulkarni and P. Brookes: Cellular Compartmentation and the Redox/Non-Redox Functions of NAD<sup>+</sup>. Antioxid Redox Signal (2019)
DOI: 10.1089/ars.2018.7722

98. E. Turunc Bayrakdar, G. Armagan, Y. Uyanikgil, L. Kanit, E. Koylu and A. Yalcin: Ex vivo protective effects of nicotinamide and 3-aminobenzamide on rat synaptosomes treated with Abeta(1-42). Cell Biochem Funct (2014)
DOI: 10.1002/cbf.3049

99. A. C. Williams, L. J. Hill and D. B. Ramsden: Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res, 2012, 302875 (2012)
DOI: 10.1155/2012/302875

100. M. Yanez, M. Jhanji, K. Murphy, R. M. Gower, M. Sajish and E. Jabbarzadeh: Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci Rep, 9(1), 10219 (2019)
DOI: 10.1038/s41598-019-46678-8

101. A. Csicsar, S. Tarantini, A. Yabluchanskiy, P. Balasubramanian, T. Kiss, E. Farkas, J. A. Baur and Z. I. Ungvari: Role of endothelial NAD+ deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol (2019)
DOI: 10.1152/ajpheart.00039.2019

102. C. Lespay-Rebolledo, A. Tapia-Bustos, D. Bustamante, P. Morales and M. Herrera-Marschitz: The Long-Term Impairment in Redox Homeostasis Observed in the Hippocampus of Rats Subjected to Global Perinatal Asphyxia (PA) Implies Changes in Glutathione-Dependent Antioxidant Enzymes and TIGAR-Dependent Shift Towards the Pentose Phosphate Pathways: Effect of Nicotinamide. Neurotox Res (2019)
DOI: 10.1007/s12640-019-00064-4

103. A. Ieraci and D. G. Herrera: Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum. Cerebellum (2018)
DOI: 10.1007/s12311-017-0916-z

104. Z. Z. Chong, S. H. Lin and K. Maiese: The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cereb Blood Flow Metab, 24(7), 728-43 (2004)

105. K. Maiese: The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci, 2(3), 185-187 (2016)
DOI: 10.15761/jts.1000138

106. Z. Z. Chong, F. Li and K. Maiese: Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol, 75(3), 207-46 (2005)

107. N. Karamzad, V. Maleki, K. Carson-Chahhoud, S. Azizi, A. Sahebkar and B. P. Gargari: A systematic review on the mechanisms of vitamin K effects on the complications of diabetes and pre-diabetes. Biofactors (2019)
DOI: 10.1002/biof.1569

108. Y. I. Mahmoud and A. A. Mahmoud: Role of nicotinamide (vitamin B3) in acetaminophen-induced changes in rat liver: Nicotinamide effect in acetaminophen-damaged liver. Exp Toxicol Pathol (2016)
DOI: 10.1016/j.etp.2016.05.003

109. J. Wang, P. Sun, Y. Bao, B. Dou, D. Song and Y. Li: Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In vitro, 26(1), 32-41 (2012)
DOI: 10.1016/j.tiv.2011.10.004

110. J. Wohlrab and D. Kreft: Niacinamide - mechanisms of action and its topical use in dermatology. Skin Pharmacol Physiol, 27(6), 311-5 (2014)
DOI: 10.1159/000359974

111. P. Xu and A. A. Sauve: Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mech Ageing Dev, 131(4), 287-98 (2010)
DOI: 10.1016/j.mad.2010.03.006

112. H. Yuan, J. Wan, L. Li, P. Ge, H. Li and L. Zhang: Therapeutic benefits of the group B3 vitamin nicotinamide in mice with lethal endotoxemia and polymicrobial sepsis. Pharmacol Res, 65(3), 328-37 (2012)
DOI: 10.1016/j.phrs.2011.11.014

113. C. Zhou, L. Na, R. Shan, Y. Cheng, Y. Li, X. Wu and C. Sun: Dietary Vitamin C Intake Reduces the Risk of Type 2 Diabetes in Chinese Adults: HOMA-IR and T-AOC as Potential Mediators. PLoS One, 11(9), e0163571 (2016)
DOI: 10.1371/journal.pone.0163571

114. R. Castro-Portuguez and G. L. Sutphin: Kynurenine pathway, NAD(+) synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol, 110841 (2020)
DOI: 10.1016/j.exger.2020.110841

115. Z. Z. Chong, F. Li and K. Maiese: Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease. Brain Res Brain Res Rev, 49(1), 1-21 (2005)

116. V. Balan, G. S. Miller, L. Kaplun, K. Balan, Z. Z. Chong, F. Li, A. Kaplun, M. F. VanBerkum, R. Arking, D. C. Freeman, K. Maiese and G. Tzivion: Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem, 283(41), 27810-9 (2008)
DOI: M804681200

117. Z. Z. Chong and K. Maiese: Enhanced Tolerance against Early and Late Apoptotic Oxidative Stress in Mammalian Neurons through Nicotinamidase and Sirtuin Mediated Pathways. Curr Neurovasc Res, 5(3), 159-70 (2008)

118. T. C. Peterson, M. R. Hoane, K. McConomy, F. Farin, T. Bammler, J. MacDonald, E. Kantor and G. Anderson: A Combination Therapy of Nicotinamide and Progesterone Improves Functional Recovery Following Traumatic Brain Injury. J Neurotrauma (2014)
DOI: 10.1089/neu.2014.3530

119. Y. Zhang, J. Wang, G. Chen, D. Fan and M. Deng: Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun, 404(2), 610-4 (2011)
DOI: 10.1016/j.bbrc.2010.12.014

120. B. Poljsak and I. Milisav: The NAD(+)-depletion theory of ageing: NAD(+) as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity and health span. Rejuvenation Res (2016)
DOI: 10.1089/rej.2015.1767

121. Z. Z. Chong, S. H. Lin and K. Maiese: Nicotinamide Modulates Mitochondrial Membrane Potential and Cysteine Protease Activity during Cerebral Vascular Endothelial Cell Injury. J Vasc Res, 39(2), 131-47. (2002)

122. O. Itzhaki, E. Greenberg, B. Shalmon, A. Kubi, A. J. Treves, R. Shapira-Frommer, C. Avivi, R. Ortenberg, E. Ben-Ami, J. Schachter, M. J. Besser and G. Markel: Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma. PLoS One, 8(2), e57160 (2013)
DOI: 10.1371/journal.pone.0057160

123. Y. Mikhed, A. Daiber and S. Steven: Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int J Mol Sci, 16(7), 15918-15953 (2015)
DOI: 10.3390/ijms160715918

124. E. Turunc Bayrakdar, Y. Uyanikgil, L. Kanit, E. Koylu and A. Yalcin: Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Abeta(1-42)-induced rat model of Alzheimer's disease. Free Radic Res, 48(2), 146-58 (2014)
DOI: 10.3109/10715762.2013.857018

125. K. Kiuchi, K. Yoshizawa, N. Shikata, M. Matsumura and A. Tsubura: Nicotinamide prevents N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats and C57BL mice. Exp Eye Res, 74(3), 383-92 (2002)

126. S. H. Lin, A. Vincent, T. Shaw, K. I. Maynard and K. Maiese: Prevention of nitric oxide-induced neuronal injury through the modulation of independent pathways of programmed cell death. J Cereb Blood Flow Metab, 20(9), 1380-91 (2000)

127. L. Naia, T. R. Rosenstock, A. M. Oliveira, S. I. Oliveira-Sousa, G. L. Caldeira, C. Carmo, M. N. Laco, M. R. Hayden, C. R. Oliveira and A. C. Rego: Comparative Mitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington's Disease Models. Mol Neurobiol (2016)
DOI: 10.1007/s12035-016-0048-3

128. A. Ahangarpour, F. Ramezani Ali Akbari and H. Fathi Moghadam: Effect of C-peptide Alone or in Combination with Nicotinamide on Glucose and Insulin Levels in Streptozotocin-Nicotinamide-Induced Type 2 Diabetic Mice. Malays J Med Sci, 21(4), 12-7 (2014)

129. J. Folwarczna, A. Janas, U. Cegiela, M. Pytlik, L. Sliwinski, M. Matejczyk, A. Nowacka, K. Rudy, Z. Krivosikova, K. Stefikova and M. Gajdos: Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes. Nutrients, 9(11) (2017)
DOI: 10.3390/nu9111196

130. A. Ghasemi, S. Khalifi and S. Jedi: Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung, 101(4), 408-20 (2014)
DOI: 10.1556/APhysiol.101.2014.4.2

131. S. Guo, Q. Chen, Y. Sun and J. Chen: Nicotinamide protects against skeletal muscle atrophy in streptozotocin-induced diabetic mice. Arch Physiol Biochem, 125(5), 470-477 (2019)
DOI: 10.1080/13813455.2019.1638414

132. H. J. Lee and S. J. Yang: Supplementation with Nicotinamide Riboside Reduces Brain Inflammation and Improves Cognitive Function in Diabetic Mice. Int J Mol Sci, 20(17) (2019)
DOI: 10.3390/ijms20174196

133. S. Reddy, N. J. Bibby, D. Wu, C. Swinney, G. Barrow and R. B. Elliott: A combined casein-free-nicotinamide diet prevents diabetes in the NOD mouse with minimum insulitis. Diabetes Res Clin Pract, 29(2), 83-92 (1995)

134. Y. Hu, Y. Wang, L. Wang, H. Zhang, B. Zhao, A. Zhang and Y. Li: Effects of nicotinamide on prevention and treatment of streptozotocin-induced diabetes mellitus in rats. Chin Med J (Engl), 109(11), 819-22 (1996)

135. S. Chlopicki, J. Swies, A. Mogielnicki, W. Buczko, M. Bartus, M. Lomnicka, J. Adamus and J. Gebicki: 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. Br J Pharmacol, 152(2), 230-9 (2007)

136. Z. Z. Chong, S. H. Lin, F. Li and K. Maiese: The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through Akt, Bad, PARP, and mitochondrial associated "anti-apoptotic" pathways. Curr Neurovasc Res, 2(4), 271-85 (2005)

137. N. Hara, K. Yamada, T. Shibata, H. Osago, T. Hashimoto and M. Tsuchiya: Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J Biol Chem, 282(34), 24574-82 (2007)

138. A. Ieraci and D. G. Herrera: Nicotinamide Protects against Ethanol-Induced Apoptotic Neurodegeneration in the Developing Mouse Brain. PLoS Med, 3(4), e101 (2006)

139. D. Tam, M. Tam and K. I. Maynard: Nicotinamide modulates energy utilization and improves functional recovery from ischemia in the in vitro rabbit retina. Ann N Y Acad Sci, 1053, 258-68 (2005)

140. P. R. Olmos, M. I. Hodgson, A. Maiz, M. Manrique, M. D. De Valdes, R. Foncea, A. M. Acosta, M. V. Emmerich, S. Velasco, O. P. Muniz, C. A. Oyarzun, J. C. Claro, M. J. Bastias and L. A. Toro: Nicotinamide protected first-phase insulin response (FPIR) and prevented clinical disease in first-degree relatives of type-1 diabetics. Diabetes Res Clin Pract, 71(3), 320-33 (2006)
DOI: S0168-8227(05)00328-1

141. A. Crino, R. Schiaffini, P. Ciampalini, M. C. Suraci, S. Manfrini, N. Visalli, M. C. Matteoli, P. Patera, R. Buzzetti, C. Guglielmi, S. Spera, F. Costanza, E. Fioriti, D. Pitocco and P. Pozzilli: A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus. J Pediatr Endocrinol Metab, 18(8), 749-54 (2005)

142. H. K. Liu, B. D. Green, P. R. Flatt, N. H. McClenaghan and J. T. McCluskey: Effects of long-term exposure to nicotinamide and sodium butyrate on growth, viability, and the function of clonal insulin secreting cells. Endocr Res, 30(1), 61-8 (2004)

143. S. Reddy, N. Salari-Lak and S. Sandler: Long-term effects of nicotinamide-induced inhibition of poly(adenosine diphosphate-ribose) polymerase activity in rat pancreatic islets exposed to interleukin-1 beta. Endocrinology, 136(5), 1907-12 (1995)

144. C. Gaudineau and K. Auclair: Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem Biophys Res Commun, 317(3), 950-6 (2004)

145. A. F. Schinder, E. C. Olson, N. C. Spitzer and M. Montal: Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci, 16(19), 6125-33. (1996)

146. D. H. Walter, J. Haendeler, J. Galle, A. M. Zeiher and S. Dimmeler: Cyclosporin A inhibits apoptosis of human endothelial cells by preventing release of cytochrome C from mitochondria. Circulation, 98(12), 1153-7. (1998)

147. A. P. Halestrap, K. Y. Woodfield and C. P. Connern: Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem, 272(6), 3346-54 (1997)

148. G. La Piana, D. Marzulli, M. I. Consalvo and N. E. Lofrumento: Cytochrome c-induced cytosolic nicotinamide adenine dinucleotide oxidation, mitochondrial permeability transition, and apoptosis. Arch Biochem Biophys, 410(2), 201-11 (2003)

149. D. J. Klionsky, K. Abdelmohsen, A. Abe, M. J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C. M. Adams, P. D. Adams, K. Adeli, P. J. Adhihetty, S. G. Adler, G. Agam, R. Agarwal, M. K. Aghi, M. Agnello, P. Agostinis, P. V. Aguilar, J. Aguirre-Ghiso, E. M. Airoldi, S. Ait-Si-Ali, T. Akematsu, E. T. Akporiaye, M. Al-Rubeai, G. M. Albaiceta, C. Albanese, D. Albani, M. L. Albert, J. Aldudo, H. Algul, M. Alirezaei, I. Alloza, A. Almasan, M. Almonte-Beceril, E. S. Alnemri, C. Alonso, N. Altan-Bonnet, D. C. Altieri, S. Alvarez, L. Alvarez-Erviti, S. Alves, G. Amadoro, A. Amano, C. Amantini, S. Ambrosio, I. Amelio, A. O. Amer, M. Amessou, A. Amon, Z. An, F. A. Anania, S. U. Andersen, U. P. Andley, C. K. Andreadi, N. Andrieu-Abadie, A. Anel, D. K. Ann, S. Anoopkumar-Dukie, M. Antonioli, H. Aoki, N. Apostolova, S. Aquila, K. Aquilano, K. Araki, E. Arama, A. Aranda, J. Araya, A. Arcaro, E. Arias, H. Arimoto, A. R. Ariosa, J. L. Armstrong, T. Arnould, I. Arsov, K. Asanuma, V. Askanas, E. Asselin, R. Atarashi, S. S. Atherton, J. D. Atkin, L. D. Attardi, P. Auberger, G. Auburger, L. Aurelian, R. Autelli, L. Avagliano, M. L. Avantaggiati, L. Avrahami, S. Awale, N. Azad, T. Bachetti, J. M. Backer, D. H. Bae, J. S. Bae, O. N. Bae, S. H. Bae, E. H. Baehrecke, S. H. Baek, S. Baghdiguian, A. Bagniewska-Zadworna, H. Bai, J. Bai, X. Y. Bai, Y. Bailly, K. N. Balaji, W. Balduini, A. Ballabio, R. Balzan, R. Banerjee, G. Banhegyi, H. Bao, B. Barbeau, M. D. Barrachina, E. Barreiro, B. Bartel, A. Bartolome, D. C. Bassham, M. T. Bassi, R. C. Bast, Jr., A. Basu, M. T. Batista, H. Batoko, M. Battino, K. Bauckman, B. L. Baumgarner, K. U. Bayer, R. Beale, J. F. Beaulieu, G. R. Beck, Jr., C. Becker, J. D. Beckham, P. A. Bedard, P. J. Bednarski, T. J. Begley, C. Behl, C. Behrends, G. M. Behrens, K. E. Behrns, E. Bejarano, A. Belaid, F. Belleudi, G. Benard, G. Berchem, D. Bergamaschi, M. Bergami, B. Berkhout, L. Berliocchi, A. Bernard, M. Bernard, F. Bernassola, A. Bertolotti, A. S. Bess, S. Besteiro, S. Bettuzzi, S. Bhalla, S. Bhattacharyya, S. K. Bhutia, C. Biagosch, M. W. Bianchi, M. Biard-Piechaczyk, V. Billes, C. Bincoletto, B. Bingol, S. W. Bird, M. Bitoun, I. Bjedov, C. Blackstone, L. Blanc, G. A. Blanco, H. K. Blomhoff, E. Boada-Romero, S. Bockler, M. Boes, K. Boesze-Battaglia, L. H. Boise, A. Bolino, A. Boman, P. Bonaldo, M. Bordi, J. Bosch, L. M. Botana, J. Botti, G. Bou, M. Bouche, M. Bouchecareilh, M. J. Boucher, M. E. Boulton, S. G. Bouret, P. Boya, M. Boyer-Guittaut, P. V. Bozhkov, N. Brady, V. M. Braga, C. Brancolini, G. H. Braus, J. M. Bravo-San Pedro, L. A. Brennan, E. H. Bresnick, P. Brest, D. Bridges, M. A. Bringer, M. Brini, G. C. Brito, B. Brodin, P. S. Brookes, E. J. Brown, K. Brown, H. E. Broxmeyer, A. Bruhat, P. C. Brum, J. H. Brumell, N. Brunetti-Pierri, R. J. Bryson-Richardson, S. Buch, A. M. Buchan, H. Budak, D. V. Bulavin, S. J. Bultman, G. Bultynck, V. Bumbasirevic, Y. Burelle, R. E. Burke, M. Burmeister, P. Butikofer, L. Caberlotto, K. Cadwell, M. Cahova, D. Cai, J. Cai, Q. Cai, S. Calatayud, N. Camougrand, M. Campanella, G. R. Campbell, M. Campbell, S. Campello, R. Candau, I. Caniggia, L. Cantoni, L. Cao, A. B. Caplan, M. Caraglia, C. Cardinali, S. M. Cardoso, J. S. Carew, L. A. Carleton, C. R. Carlin, S. Carloni, S. R. Carlsson, D. Carmona-Gutierrez, L. A. Carneiro, O. Carnevali, S. Carra, A. Carrier, B. Carroll, C. Casas, J. Casas, G. Cassinelli, P. Castets, S. Castro-Obregon, G. Cavallini, I. Ceccherini, F. Cecconi, A. I. Cederbaum, V. Cena, S. Cenci, C. Cerella, D. Cervia, S. Cetrullo, H. Chaachouay, H. J. Chae, A. S. Chagin, C. Y. Chai, G. Chakrabarti, G. Chamilos, E. Y. Chan, M. T. Chan, D. Chandra, P. Chandra, C. P. Chang, R. C. Chang, T. Y. Chang, J. C. Chatham, S. Chatterjee, S. Chauhan, Y. Che, M. E. Cheetham, R. Cheluvappa, C. J. Chen, G. Chen, G. C. Chen, G. Chen, H. Chen, J. W. Chen, J. K. Chen, M. Chen, M. Chen, P. Chen, Q. Chen, Q. Chen, S. D. Chen, S. Chen, S. S. Chen, W. Chen, W. J. Chen, W. Q. Chen, W. Chen, X. Chen, Y. H. Chen, Y. G. Chen, Y. Chen, Y. Chen, Y. Chen, Y. J. Chen, Y. Q. Chen, Y. Chen, Z. Chen, Z. Chen, A. Cheng, C. H. Cheng, H. Cheng, H. Cheong, S. Cherry, J. Chesney, C. H. Cheung, E. Chevet, H. C. Chi, S. G. Chi, F. Chiacchiera, H. L. Chiang, R. Chiarelli, M. Chiariello, M. Chieppa, L. S. Chin, M. Chiong, G. N. Chiu, D. H. Cho, S. G. Cho, W. C. Cho, Y. Y. Cho, Y. S. Cho, A. M. Choi, E. J. Choi, E. K. Choi, J. Choi, M. E. Choi, S. I. Choi, T. F. Chou, S. Chouaib, D. Choubey, V. Choubey, K. C. Chow, K. Chowdhury, C. T. Chu, T. H. Chuang, T. Chun, H. Chung, T. Chung, Y. L. Chung, Y. J. Chwae, V. Cianfanelli, R. Ciarcia, I. A. Ciechomska, M. R. Ciriolo, M. Cirone, S. Claerhout, M. J. Clague, J. Claria, P. G. Clarke, R. Clarke, E. Clementi, C. Cleyrat, M. Cnop, E. M. Coccia, T. Cocco, P. Codogno, J. Coers, E. E. Cohen, D. Colecchia, L. Coletto, N. S. Coll, E. Colucci-Guyon, S. Comincini, M. Condello, K. L. Cook, G. H. Coombs, C. D. Cooper, J. M. Cooper, I. Coppens, M. T. Corasaniti, M. Corazzari, R. Corbalan, E. Corcelle-Termeau, M. D. Cordero, C. Corral-Ramos, O. Corti, A. Cossarizza, P. Costelli, S. Costes, S. L. Cotman, A. Coto-Montes, S. Cottet, E. Couve, L. R. Covey, L. A. Cowart, J. S. Cox, F. P. Coxon, C. B. Coyne, M. S. Cragg, R. J. Craven, T. Crepaldi, J. L. Crespo, A. Criollo, V. Crippa, M. T. Cruz, A. M. Cuervo, J. M. Cuezva, T. Cui, P. R. Cutillas, M. J. Czaja, M. F. Czyzyk-Krzeska, R. K. Dagda, U. Dahmen, C. Dai, W. Dai, Y. Dai, K. N. Dalby, L. Dalla Valle, G. Dalmasso, M. D'Amelio, M. Damme, A. Darfeuille-Michaud, C. Dargemont, V. M. Darley-Usmar, S. Dasarathy, B. Dasgupta, S. Dash, C. R. Dass, H. M. Davey, L. M. Davids, D. Davila, R. J. Davis, T. M. Dawson, V. L. Dawson, P. Daza, J. de Belleroche, P. de Figueiredo, R. C. de Figueiredo, J. de la Fuente, L. De Martino, A. De Matteis, G. R. De Meyer, A. De Milito, M. De Santi, W. de Souza, V. De Tata, D. De Zio, J. Debnath, R. Dechant, J. P. Decuypere, S. Deegan, B. Dehay, B. Del Bello, D. P. Del Re, R. Delage-Mourroux, L. M. Delbridge, L. Deldicque, E. Delorme-Axford, Y. Deng, J. Dengjel, M. Denizot, P. Dent, C. J. Der, V. Deretic, B. Derrien, E. Deutsch, T. P. Devarenne, R. J. Devenish, S. Di Bartolomeo, N. Di Daniele, F. Di Domenico, A. Di Nardo, S. Di Paola, A. Di Pietro, L. Di Renzo, A. DiAntonio, G. Diaz-Araya, I. Diaz-Laviada, M. T. Diaz-Meco, J. Diaz-Nido, C. A. Dickey, R. C. Dickson, M. Diederich, P. Digard, I. Dikic, S. P. Dinesh-Kumar, C. Ding, W. X. Ding, Z. Ding, L. Dini, J. H. Distler, A. Diwan, M. Djavaheri-Mergny, K. Dmytruk, R. C. Dobson, V. Doetsch, K. Dokladny, S. Dokudovskaya, M. Donadelli, X. C. Dong, X. Dong, Z. Dong, T. M. Donohue, Jr., K. S. Doran, G. D'Orazi, G. W. Dorn, 2nd, V. Dosenko, S. Dridi, L. Drucker, J. Du, L. L. Du, L. Du, A. du Toit, P. Dua, L. Duan, P. Duann, V. K. Dubey, M. R. Duchen, M. A. Duchosal, H. Duez, I. Dugail, V. I. Dumit, M. C. Duncan, E. A. Dunlop, W. A. Dunn, Jr., N. Dupont, L. Dupuis, R. V. Duran, T. M. Durcan, S. Duvezin-Caubet, U. Duvvuri, V. Eapen, D. Ebrahimi-Fakhari, A. Echard, L. Eckhart, C. L. Edelstein, A. L. Edinger, L. Eichinger, T. Eisenberg, A. Eisenberg-Lerner, N. T. Eissa, W. S. El-Deiry, V. El-Khoury, Z. Elazar, H. Eldar-Finkelman, C. J. Elliott, E. Emanuele, U. Emmenegger, N. Engedal, A. M. Engelbrecht, S. Engelender, J. M. Enserink, R. Erdmann, J. Erenpreisa, R. Eri, J. L. Eriksen, A. Erman, R. Escalante, E. L. Eskelinen, L. Espert, L. Esteban-Martinez, T. J. Evans, M. Fabri, G. Fabrias, C. Fabrizi, A. Facchiano, N. J. Faergeman, A. Faggioni, W. D. Fairlie, C. Fan, D. Fan, J. Fan, S. Fang, M. Fanto, A. Fanzani, T. Farkas, M. Faure, F. B. Favier, H. Fearnhead, M. Federici, E. Fei, T. C. Felizardo, H. Feng, Y. Feng, Y. Feng, T. A. Ferguson, A. F. Fernandez, M. G. Fernandez-Barrena, J. C. Fernandez-Checa, A. Fernandez-Lopez, M. E. Fernandez-Zapico, O. Feron, E. Ferraro, C. V. Ferreira-Halder, L. Fesus, R. Feuer, F. C. Fiesel, E. C. Filippi-Chiela, G. Filomeni, G. M. Fimia, J. H. Fingert, S. Finkbeiner, T. Finkel, F. Fiorito, P. B. Fisher, M. Flajolet, F. Flamigni, O. Florey, S. Florio, R. A. Floto, M. Folini, C. Follo, E. A. Fon, F. Fornai, F. Fortunato, A. Fraldi, R. Franco, A. Francois, A. Francois, L. B. Frankel, I. D. Fraser, N. Frey, D. G. Freyssenet, C. Frezza, S. L. Friedman, D. E. Frigo, D. Fu, J. M. Fuentes, J. Fueyo, Y. Fujitani, Y. Fujiwara, M. Fujiya, M. Fukuda, S. Fulda, C. Fusco, B. Gabryel, M. Gaestel, P. Gailly, M. Gajewska, S. Galadari, G. Galili, I. Galindo, M. F. Galindo, G. Galliciotti, L. Galluzzi, L. Galluzzi, V. Galy, N. Gammoh, S. Gandy, A. K. Ganesan, S. Ganesan, I. G. Ganley, M. Gannage, F. B. Gao, F. Gao, J. X. Gao, L. Garcia Nannig, E. Garcia Vescovi, M. Garcia-Macia, C. Garcia-Ruiz, A. D. Garg, P. K. Garg, R. Gargini, N. C. Gassen, D. Gatica, E. Gatti, J. Gavard, E. Gavathiotis, L. Ge, P. Ge, S. Ge, P. W. Gean, V. Gelmetti, A. A. Genazzani, J. Geng, P. Genschik, L. Gerner, J. E. Gestwicki, D. A. Gewirtz, S. Ghavami, E. Ghigo, D. Ghosh, A. M. Giammarioli, F. Giampieri, C. Giampietri, A. Giatromanolaki, D. J. Gibbings, L. Gibellini, S. B. Gibson, V. Ginet, A. Giordano, F. Giorgini, E. Giovannetti, S. E. Girardin, S. Gispert, S. Giuliano, C. L. Gladson, A. Glavic, M. Gleave, N. Godefroy, R. M. Gogal, Jr., K. Gokulan, G. H. Goldman, D. Goletti, M. S. Goligorsky, A. V. Gomes, L. C. Gomes, H. Gomez, C. Gomez-Manzano, R. Gomez-Sanchez, D. A. Goncalves, E. Goncu, Q. Gong, C. Gongora, C. B. Gonzalez, P. Gonzalez-Alegre, P. Gonzalez-Cabo, R. A. Gonzalez-Polo, I. S. Goping, C. Gorbea, N. V. Gorbunov, D. R. Goring, A. M. Gorman, S. M. Gorski, S. Goruppi, S. Goto-Yamada, C. Gotor, R. A. Gottlieb, I. Gozes, D. Gozuacik, Y. Graba, M. Graef, G. E. Granato, G. D. Grant, S. Grant, G. L. Gravina, D. R. Green, A. Greenhough, M. T. Greenwood, B. Grimaldi, F. Gros, C. Grose, J. F. Groulx, F. Gruber, P. Grumati, T. Grune, J. L. Guan, K. L. Guan, B. Guerra, C. Guillen, K. Gulshan, J. Gunst, C. Guo, L. Guo, M. Guo, W. Guo, X. G. Guo, A. A. Gust, A. B. Gustafsson, E. Gutierrez, M. G. Gutierrez, H. S. Gwak, A. Haas, J. E. Haber, S. Hadano, M. Hagedorn, D. R. Hahn, A. J. Halayko, A. Hamacher-Brady, K. Hamada, A. Hamai, A. Hamann, M. Hamasaki, I. Hamer, Q. Hamid, E. M. Hammond, F. Han, W. Han, J. T. Handa, J. A. Hanover, M. Hansen, M. Harada, L. Harhaji-Trajkovic, J. W. Harper, A. H. Harrath, A. L. Harris, J. Harris, U. Hasler, P. Hasselblatt, K. Hasui, R. G. Hawley, T. S. Hawley, C. He, C. Y. He, F. He, G. He, R. R. He, X. H. He, Y. W. He, Y. Y. He, J. K. Heath, M. J. Hebert, R. A. Heinzen, G. V. Helgason, M. Hensel, E. P. Henske, C. Her, P. K. Herman, A. Hernandez, C. Hernandez, S. Hernandez-Tiedra, C. Hetz, P. R. Hiesinger, K. Higaki, S. Hilfiker, B. G. Hill, J. A. Hill, W. D. Hill, K. Hino, D. Hofius, P. Hofman, G. U. Hoglinger, J. Hohfeld, M. K. Holz, Y. Hong, D. A. Hood, J. J. Hoozemans, T. Hoppe, C. Hsu, C. Y. Hsu, L. C. Hsu, D. Hu, G. Hu, H. M. Hu, H. Hu, M. C. Hu, Y. C. Hu, Z. W. Hu, F. Hua, Y. Hua, C. Huang, H. L. Huang, K. H. Huang, K. Y. Huang, S. Huang, S. Huang, W. P. Huang, Y. R. Huang, Y. Huang, Y. Huang, T. B. Huber, P. Huebbe, W. K. Huh, J. J. Hulmi, G. M. Hur, J. H. Hurley, Z. Husak, S. N. Hussain, S. Hussain, J. J. Hwang, S. Hwang, T. I. Hwang, A. Ichihara, Y. Imai, C. Imbriano, M. Inomata, T. Into, V. Iovane, J. L. Iovanna, R. V. Iozzo, N. Y. Ip, J. E. Irazoqui, P. Iribarren, Y. Isaka, A. J. Isakovic, H. Ischiropoulos, J. S. Isenberg, M. Ishaq, H. Ishida, I. Ishii, J. E. Ishmael, C. Isidoro, K. I. Isobe, E. Isono, S. Issazadeh-Navikas, K. Itahana, E. Itakura, A. I. Ivanov, A. K. Iyer, J. M. Izquierdo, Y. Izumi, V. Izzo, M. Jaattela, N. Jaber, D. J. Jackson, W. T. Jackson, T. G. Jacob, T. S. Jacques, C. Jagannath, A. Jain, N. R. Jana, B. K. Jang, A. Jani, B. Janji, P. R. Jannig, P. J. Jansson, S. Jean, M. Jendrach, J. H. Jeon, N. Jessen, E. B. Jeung, K. Jia, L. Jia, H. Jiang, H. Jiang, L. Jiang, T. Jiang, X. Jiang, X. Jiang, X. Jiang, Y. Jiang, Y. Jiang, A. Jimenez, C. Jin, H. Jin, L. Jin, M. Jin, S. Jin, U. K. Jinwal, E. K. Jo, T. Johansen, D. E. Johnson, G. V. Johnson, J. D. Johnson, E. Jonasch, C. Jones, L. A. Joosten, J. Jordan, A. M. Joseph, B. Joseph, A. M. Joubert, D. Ju, J. Ju, H. F. Juan, K. Juenemann, G. Juhasz, H. S. Jung, J. U. Jung, Y. K. Jung, H. Jungbluth, M. J. Justice, B. Jutten, N. O. Kaakoush, K. Kaarniranta, A. Kaasik, T. Kabuta, B. Kaeffer, K. Kagedal, A. Kahana, S. Kajimura, O. Kakhlon, M. Kalia, D. V. Kalvakolanu, Y. Kamada, K. Kambas, V. O. Kaminskyy, H. H. Kampinga, M. Kandouz, C. Kang, R. Kang, T. C. Kang, T. Kanki, T. D. Kanneganti, H. Kanno, A. G. Kanthasamy, M. Kantorow, M. Kaparakis-Liaskos, O. Kapuy, V. Karantza, M. R. Karim, P. Karmakar, A. Kaser, S. Kaushik, T. Kawula, A. M. Kaynar, P. Y. Ke, Z. J. Ke, J. H. Kehrl, K. E. Keller, J. K. Kemper, A. K. Kenworthy, O. Kepp, A. Kern, S. Kesari, D. Kessel, R. Ketteler, I. D. Kettelhut, B. Khambu, M. M. Khan, V. K. Khandelwal, S. Khare, J. G. Kiang, A. A. Kiger, A. Kihara, A. L. Kim, C. H. Kim, D. R. Kim, D. H. Kim, E. K. Kim, H. Y. Kim, H. R. Kim, J. S. Kim, J. H. Kim, J. C. Kim, J. H. Kim, K. W. Kim, M. D. Kim, M. M. Kim, P. K. Kim, S. W. Kim, S. Y. Kim, Y. S. Kim, Y. Kim, A. Kimchi, A. C. Kimmelman, T. Kimura, J. S. King, K. Kirkegaard, V. Kirkin, L. A. Kirshenbaum, S. Kishi, Y. Kitajima, K. Kitamoto, Y. Kitaoka, K. Kitazato, R. A. Kley, W. T. Klimecki, M. Klinkenberg, J. Klucken, H. Knaevelsrud, E. Knecht, L. Knuppertz, J. L. Ko, S. Kobayashi, J. C. Koch, C. Koechlin-Ramonatxo, U. Koenig, Y. H. Koh, K. Kohler, S. D. Kohlwein, M. Koike, M. Komatsu, E. Kominami, D. Kong, H. J. Kong, E. G. Konstantakou, B. T. Kopp, T. Korcsmaros, L. Korhonen, V. I. Korolchuk, N. V. Koshkina, Y. Kou, M. I. Koukourakis, C. Koumenis, A. L. Kovacs, T. Kovacs, W. J. Kovacs, D. Koya, C. Kraft, D. Krainc, H. Kramer, T. Kravic-Stevovic, W. Krek, C. Kretz-Remy, R. Krick, M. Krishnamurthy, J. Kriston-Vizi, G. Kroemer, M. C. Kruer, R. Kruger, N. T. Ktistakis, K. Kuchitsu, C. Kuhn, A. P. Kumar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, R. Kumar, S. Kumar, M. Kundu, H. J. Kung, A. Kuno, S. H. Kuo, J. Kuret, T. Kurz, T. Kwok, T. K. Kwon, Y. T. Kwon, I. Kyrmizi, A. R. La Spada, F. Lafont, T. Lahm, A. Lakkaraju, T. Lam, T. Lamark, S. Lancel, T. H. Landowski, D. J. Lane, J. D. Lane, C. Lanzi, P. Lapaquette, L. R. Lapierre, J. Laporte, J. Laukkarinen, G. W. Laurie, S. Lavandero, L. Lavie, M. J. LaVoie, B. Y. Law, H. K. Law, K. B. Law, R. Layfield, P. A. Lazo, L. Le Cam, K. G. Le Roch, H. Le Stunff, V. Leardkamolkarn, M. Lecuit, B. H. Lee, C. H. Lee, E. F. Lee, G. M. Lee, H. J. Lee, H. Lee, J. K. Lee, J. Lee, J. H. Lee, J. H. Lee, M. Lee, M. S. Lee, P. J. Lee, S. W. Lee, S. J. Lee, S. J. Lee, S. Y. Lee, S. H. Lee, S. S. Lee, S. J. Lee, S. Lee, Y. R. Lee, Y. J. Lee, Y. H. Lee, C. Leeuwenburgh, S. Lefort, R. Legouis, J. Lei, Q. Y. Lei, D. A. Leib, G. Leibowitz, I. Lekli, S. D. Lemaire, J. J. Lemasters, M. K. Lemberg, A. Lemoine, S. Leng, G. Lenz, P. Lenzi, L. O. Lerman, D. Lettieri Barbato, J. I. Leu, H. Y. Leung, B. Levine, P. A. Lewis, F. Lezoualc'h, C. Li, F. Li, F. J. Li, J. Li, K. Li, L. Li, M. Li, M. Li, Q. Li, R. Li, S. Li, W. Li, W. Li, X. Li, Y. Li, J. Lian, C. Liang, Q. Liang, Y. Liao, J. Liberal, P. P. Liberski, P. Lie, A. P. Lieberman, H. J. Lim, K. L. Lim, K. Lim, R. T. Lima, C. S. Lin, C. F. Lin, F. Lin, F. Lin, F. C. Lin, K. Lin, K. H. Lin, P. H. Lin, T. Lin, W. W. Lin, Y. S. Lin, Y. Lin, R. Linden, D. Lindholm, L. M. Lindqvist, P. Lingor, A. Linkermann, L. A. Liotta, M. M. Lipinski, V. A. Lira, M. P. Lisanti, P. B. Liton, B. Liu, C. Liu, C. F. Liu, F. Liu, H. J. Liu, J. Liu, J. J. Liu, J. L. Liu, K. Liu, L. Liu, L. Liu, Q. Liu, R. Y. Liu, S. Liu, S. Liu, W. Liu, X. D. Liu, X. Liu, X. H. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liu, J. P. Liuzzi, G. Lizard, M. Ljujic, I. J. Lodhi, S. E. Logue, B. L. Lokeshwar, Y. C. Long, S. Lonial, B. Loos, C. Lopez-Otin, C. Lopez-Vicario, M. Lorente, P. L. Lorenzi, P. Lorincz, M. Los, M. T. Lotze, P. E. Lovat, B. Lu, B. Lu, J. Lu, Q. Lu, S. M. Lu, S. Lu, Y. Lu, F. Luciano, S. Luckhart, J. M. Lucocq, P. Ludovico, A. Lugea, N. W. Lukacs, J. J. Lum, A. H. Lund, H. Luo, J. Luo, S. Luo, C. Luparello, T. Lyons, J. Ma, Y. Ma, Y. Ma, Z. Ma, J. Machado, G. M. Machado-Santelli, F. Macian, G. C. MacIntosh, J. P. MacKeigan, K. F. Macleod, J. D. MacMicking, L. A. MacMillan-Crow, F. Madeo, M. Madesh, J. Madrigal-Matute, A. Maeda, T. Maeda, G. Maegawa, E. Maellaro, H. Maes, M. Magarinos, K. Maiese, T. K. Maiti, L. Maiuri, M. C. Maiuri, C. G. Maki, R. Malli, W. Malorni, A. Maloyan, F. Mami-Chouaib, N. Man, J. D. Mancias, E. M. Mandelkow, M. A. Mandell, A. A. Manfredi, S. N. Manie, C. Manzoni, K. Mao, Z. Mao, Z. W. Mao, P. Marambaud, A. M. Marconi, Z. Marelja, G. Marfe, M. Margeta, E. Margittai, M. Mari, F. V. Mariani, C. Marin, S. Marinelli, G. Marino, I. Markovic, R. Marquez, A. M. Martelli, S. Martens, K. R. Martin, S. J. Martin, S. Martin, M. A. Martin-Acebes, P. Martin-Sanz, C. Martinand-Mari, W. Martinet, J. Martinez, N. Martinez-Lopez, U. Martinez-Outschoorn, M. Martinez-Velazquez, M. Martinez-Vicente, W. K. Martins, H. Mashima, J. A. Mastrianni, G. Matarese, P. Matarrese, R. Mateo, S. Matoba, N. Matsumoto, T. Matsushita, A. Matsuura, T. Matsuzawa, M. P. Mattson, S. Matus, N. Maugeri, C. Mauvezin, A. Mayer, D. Maysinger, G. D. Mazzolini, M. K. McBrayer, K. McCall, C. McCormick, G. M. McInerney, S. C. McIver, S. McKenna, J. J. McMahon, I. A. McNeish, F. Mechta-Grigoriou, J. P. Medema, D. L. Medina, K. Megyeri, M. Mehrpour, J. L. Mehta, Y. Mei, U. C. Meier, A. J. Meijer, A. Melendez, G. Melino, S. Melino, E. J. de Melo, M. A. Mena, M. D. Meneghini, J. A. Menendez, R. Menezes, L. Meng, L. H. Meng, S. Meng, R. Menghini, A. S. Menko, R. F. Menna-Barreto, M. B. Menon, M. A. Meraz-Rios, G. Merla, L. Merlini, A. M. Merlot, A. Meryk, S. Meschini, J. N. Meyer, M. T. Mi, C. Y. Miao, L. Micale, S. Michaeli, C. Michiels, A. R. Migliaccio, A. S. Mihailidou, D. Mijaljica, K. Mikoshiba, E. Milan, L. Miller-Fleming, G. B. Mills, I. G. Mills, G. Minakaki, B. A. Minassian, X. F. Ming, F. Minibayeva, E. A. Minina, J. D. Mintern, S. Minucci, A. Miranda-Vizuete, C. H. Mitchell, S. Miyamoto, K. Miyazawa, N. Mizushima, K. Mnich, B. Mograbi, S. Mohseni, L. F. Moita, M. Molinari, M. Molinari, A. B. Moller, B. Mollereau, F. Mollinedo, M. Mongillo, M. M. Monick, S. Montagnaro, C. Montell, D. J. Moore, M. N. Moore, R. Mora-Rodriguez, P. I. Moreira, E. Morel, M. B. Morelli, S. Moreno, M. J. Morgan, A. Moris, Y. Moriyasu, J. L. Morrison, L. A. Morrison, E. Morselli, J. Moscat, P. L. Moseley, S. Mostowy, E. Motori, D. Mottet, J. C. Mottram, C. E. Moussa, V. E. Mpakou, H. Mukhtar, J. M. Mulcahy Levy, S. Muller, R. Munoz-Moreno, C. Munoz-Pinedo, C. Munz, M. E. Murphy, J. T. Murray, A. Murthy, I. U. Mysorekar, I. R. Nabi, M. Nabissi, G. A. Nader, Y. Nagahara, Y. Nagai, K. Nagata, A. Nagelkerke, P. Nagy, S. R. Naidu, S. Nair, H. Nakano, H. Nakatogawa, M. Nanjundan, G. Napolitano, N. I. Naqvi, R. Nardacci, D. P. Narendra, M. Narita, A. C. Nascimbeni, R. Natarajan, L. C. Navegantes, S. T. Nawrocki, T. Y. Nazarko, V. Y. Nazarko, T. Neill, L. M. Neri, M. G. Netea, R. T. Netea-Maier, B. M. Neves, P. A. Ney, I. P. Nezis, H. T. Nguyen, H. P. Nguyen, A. S. Nicot, H. Nilsen, P. Nilsson, M. Nishimura, I. Nishino, M. Niso-Santano, H. Niu, R. A. Nixon, V. C. Njar, T. Noda, A. A. Noegel, E. M. Nolte, E. Norberg, K. K. Norga, S. K. Noureini, S. Notomi, L. Notterpek, K. Nowikovsky, N. Nukina, T. Nurnberger, V. B. O'Donnell, T. O'Donovan, P. J. O'Dwyer, I. Oehme, C. L. Oeste, M. Ogawa, B. Ogretmen, Y. Ogura, Y. J. Oh, M. Ohmuraya, T. Ohshima, R. Ojha, K. Okamoto, T. Okazaki, F. J. Oliver, K. Ollinger, S. Olsson, D. P. Orban, P. Ordonez, I. Orhon, L. Orosz, E. J. O'Rourke, H. Orozco, A. L. Ortega, E. Ortona, L. D. Osellame, J. Oshima, S. Oshima, H. D. Osiewacz, T. Otomo, K. Otsu, J. J. Ou, T. F. Outeiro, D. Y. Ouyang, H. Ouyang, M. Overholtzer, M. A. Ozbun, P. H. Ozdinler, B. Ozpolat, C. Pacelli, P. Paganetti, G. Page, G. Pages, U. Pagnini, B. Pajak, S. C. Pak, K. Pakos-Zebrucka, N. Pakpour, Z. Palkova, F. Palladino, K. Pallauf, N. Pallet, M. Palmieri, S. R. Paludan, C. Palumbo, S. Palumbo, O. Pampliega, H. Pan, W. Pan, T. Panaretakis, A. Pandey, A. Pantazopoulou, Z. Papackova, D. L. Papademetrio, I. Papassideri, A. Papini, N. Parajuli, J. Pardo, V. V. Parekh, G. Parenti, J. I. Park, J. Park, O. K. Park, R. Parker, R. Parlato, J. B. Parys, K. R. Parzych, J. M. Pasquet, B. Pasquier, K. B. Pasumarthi, D. Patschan, C. Patterson, S. Pattingre, S. Pattison, A. Pause, H. Pavenstadt, F. Pavone, Z. Pedrozo, F. J. Pena, M. A. Penalva, M. Pende, J. Peng, F. Penna, J. M. Penninger, A. Pensalfini, S. Pepe, G. J. Pereira, P. C. Pereira, V. Perez-de la Cruz, M. E. Perez-Perez, D. Perez-Rodriguez, D. Perez-Sala, C. Perier, A. Perl, D. H. Perlmutter, I. Perrotta, S. Pervaiz, M. Pesonen, J. E. Pessin, G. J. Peters, M. Petersen, I. Petrache, B. J. Petrof, G. Petrovski, J. M. Phang, M. Piacentini, M. Pierdominici, P. Pierre, V. Pierrefite-Carle, F. Pietrocola, F. X. Pimentel-Muinos, M. Pinar, B. Pineda, R. Pinkas-Kramarski, M. Pinti, P. Pinton, B. Piperdi, J. M. Piret, L. C. Platanias, H. W. Platta, E. D. Plowey, S. Poggeler, M. Poirot, P. Polcic, A. Poletti, A. H. Poon, H. Popelka, B. Popova, I. Poprawa, S. M. Poulose, J. Poulton, S. K. Powers, T. Powers, M. Pozuelo-Rubio, K. Prak, R. Prange, M. Prescott, M. Priault, S. Prince, R. L. Proia, T. Proikas-Cezanne, H. Prokisch, V. J. Promponas, K. Przyklenk, R. Puertollano, S. Pugazhenthi, L. Puglielli, A. Pujol, J. Puyal, D. Pyeon, X. Qi, W. B. Qian, Z. H. Qin, Y. Qiu, Z. Qu, J. Quadrilatero, F. Quinn, N. Raben, H. Rabinowich, F. Radogna, M. J. Ragusa, M. Rahmani, K. Raina, S. Ramanadham, R. Ramesh, A. Rami, S. Randall-Demllo, F. Randow, H. Rao, V. A. Rao, B. B. Rasmussen, T. M. Rasse, E. A. Ratovitski, P. E. Rautou, S. K. Ray, B. Razani, B. H. Reed, F. Reggiori, M. Rehm, A. S. Reichert, T. Rein, D. J. Reiner, E. Reits, J. Ren, X. Ren, M. Renna, J. E. Reusch, J. L. Revuelta, L. Reyes, A. R. Rezaie, R. I. Richards, D. R. Richardson, C. Richetta, M. A. Riehle, B. H. Rihn, Y. Rikihisa, B. E. Riley, G. Rimbach, M. R. Rippo, K. Ritis, F. Rizzi, E. Rizzo, P. J. Roach, J. Robbins, M. Roberge, G. Roca, M. C. Roccheri, S. Rocha, C. M. Rodrigues, C. I. Rodriguez, S. R. de Cordoba, N. Rodriguez-Muela, J. Roelofs, V. V. Rogov, T. T. Rohn, B. Rohrer, D. Romanelli, L. Romani, P. S. Romano, M. I. Roncero, J. L. Rosa, A. Rosello, K. V. Rosen, P. Rosenstiel, M. Rost-Roszkowska, K. A. Roth, G. Roue, M. Rouis, K. M. Rouschop, D. T. Ruan, D. Ruano, D. C. Rubinsztein, E. B. Rucker, 3rd, A. Rudich, E. Rudolf, R. Rudolf, M. A. Ruegg, C. Ruiz-Roldan, A. A. Ruparelia, P. Rusmini, D. W. Russ, G. L. Russo, G. Russo, R. Russo, T. E. Rusten, V. Ryabovol, K. M. Ryan, S. W. Ryter, D. M. Sabatini, M. Sacher, C. Sachse, M. N. Sack, J. Sadoshima, P. Saftig, R. Sagi-Eisenberg, S. Sahni, P. Saikumar, T. Saito, T. Saitoh, K. Sakakura, M. Sakoh-Nakatogawa, Y. Sakuraba, M. Salazar-Roa, P. Salomoni, A. K. Saluja, P. M. Salvaterra, R. Salvioli, A. Samali, A. M. Sanchez, J. A. Sanchez-Alcazar, R. Sanchez-Prieto, M. Sandri, M. A. Sanjuan, S. Santaguida, L. Santambrogio, G. Santoni, C. N. Dos Santos, S. Saran, M. Sardiello, G. Sargent, P. Sarkar, S. Sarkar, M. R. Sarrias, M. M. Sarwal, C. Sasakawa, M. Sasaki, M. Sass, K. Sato, M. Sato, J. Satriano, N. Savaraj, S. Saveljeva, L. Schaefer, U. E. Schaible, M. Scharl, H. M. Schatzl, R. Schekman, W. Scheper, A. Schiavi, H. M. Schipper, H. Schmeisser, J. Schmidt, I. Schmitz, B. E. Schneider, E. M. Schneider, J. L. Schneider, E. A. Schon, M. J. Schonenberger, A. H. Schonthal, D. F. Schorderet, B. Schroder, S. Schuck, R. J. Schulze, M. Schwarten, T. L. Schwarz, S. Sciarretta, K. Scotto, A. I. Scovassi, R. A. Screaton, M. Screen, H. Seca, S. Sedej, L. Segatori, N. Segev, P. O. Seglen, J. M. Segui-Simarro, J. Segura-Aguilar, E. Seki, C. Sell, I. Selliez, C. F. Semenkovich, G. L. Semenza, U. Sen, A. L. Serra, A. Serrano-Puebla, H. Sesaki, T. Setoguchi, C. Settembre, J. J. Shacka, A. N. Shajahan-Haq, I. M. Shapiro, S. Sharma, H. She, C. J. Shen, C. C. Shen, H. M. Shen, S. Shen, W. Shen, R. Sheng, X. Sheng, Z. H. Sheng, T. G. Shepherd, J. Shi, Q. Shi, Q. Shi, Y. Shi, S. Shibutani, K. Shibuya, Y. Shidoji, J. J. Shieh, C. M. Shih, Y. Shimada, S. Shimizu, D. W. Shin, M. L. Shinohara, M. Shintani, T. Shintani, T. Shioi, K. Shirabe, R. Shiri-Sverdlov, O. Shirihai, G. C. Shore, C. W. Shu, D. Shukla, A. A. Sibirny, V. Sica, C. J. Sigurdson, E. M. Sigurdsson, P. S. Sijwali, B. Sikorska, W. A. Silveira, S. Silvente-Poirot, G. A. Silverman, J. Simak, T. Simmet, A. K. Simon, H. U. Simon, C. Simone, M. Simons, A. Simonsen, R. Singh, S. V. Singh, S. K. Singh, D. Sinha, S. Sinha, F. A. Sinicrope, A. Sirko, K. Sirohi, B. J. Sishi, A. Sittler, P. M. Siu, E. Sivridis, A. Skwarska, R. Slack, I. Slaninova, N. Slavov, S. S. Smaili, K. S. Smalley, D. R. Smith, S. J. Soenen, S. A. Soleimanpour, A. Solhaug, K. Somasundaram, J. H. Son, A. Sonawane, C. Song, F. Song, H. K. Song, J. X. Song, W. Song, K. Y. Soo, A. K. Sood, T. W. Soong, V. Soontornniyomkij, M. Sorice, F. Sotgia, D. R. Soto-Pantoja, A. Sotthibundhu, M. J. Sousa, H. P. Spaink, P. N. Span, A. Spang, J. D. Sparks, P. G. Speck, S. A. Spector, C. D. Spies, W. Springer, D. S. Clair, A. Stacchiotti, B. Staels, M. T. Stang, D. T. Starczynowski, P. Starokadomskyy, C. Steegborn, J. W. Steele, L. Stefanis, J. Steffan, C. M. Stellrecht, H. Stenmark, T. M. Stepkowski, S. T. Stern, C. Stevens, B. R. Stockwell, V. Stoka, Z. Storchova, B. Stork, V. Stratoulias, D. J. Stravopodis, P. Strnad, A. M. Strohecker, A. L. Strom, P. Stromhaug, J. Stulik, Y. X. Su, Z. Su, C. S. Subauste, S. Subramaniam, C. M. Sue, S. W. Suh, X. Sui, S. Sukseree, D. Sulzer, F. L. Sun, J. Sun, J. Sun, S. Y. Sun, Y. Sun, Y. Sun, Y. Sun, V. Sundaramoorthy, J. Sung, H. Suzuki, K. Suzuki, N. Suzuki, T. Suzuki, Y. J. Suzuki, M. S. Swanson, C. Swanton, K. Sward, G. Swarup, S. T. Sweeney, P. W. Sylvester, Z. Szatmari, E. Szegezdi, P. W. Szlosarek, H. Taegtmeyer, M. Tafani, E. Taillebourg, S. W. Tait, K. Takacs-Vellai, Y. Takahashi, S. Takats, G. Takemura, N. Takigawa, N. J. Talbot, E. Tamagno, J. Tamburini, C. P. Tan, L. Tan, M. L. Tan, M. Tan, Y. J. Tan, K. Tanaka, M. Tanaka, D. Tang, D. Tang, G. Tang, I. Tanida, K. Tanji, B. A. Tannous, J. A. Tapia, I. Tasset-Cuevas, M. Tatar, I. Tavassoly, N. Tavernarakis, A. Taylor, G. S. Taylor, G. A. Taylor, J. P. Taylor, M. J. Taylor, E. V. Tchetina, A. R. Tee, F. Teixeira-Clerc, S. Telang, T. Tencomnao, B. B. Teng, R. J. Teng, F. Terro, G. Tettamanti, A. L. Theiss, A. E. Theron, K. J. Thomas, M. P. Thome, P. G. Thomes, A. Thorburn, J. Thorner, T. Thum, M. Thumm, T. L. Thurston, L. Tian, A. Till, J. P. Ting, V. I. Titorenko, L. Toker, S. Toldo, S. A. Tooze, I. Topisirovic, M. L. Torgersen, L. Torosantucci, A. Torriglia, M. R. Torrisi, C. Tournier, R. Towns, V. Trajkovic, L. H. Travassos, G. Triola, D. N. Tripathi, D. Trisciuoglio, R. Troncoso, I. P. Trougakos, A. C. Truttmann, K. J. Tsai, M. P. Tschan, Y. H. Tseng, T. Tsukuba, A. Tsung, A. S. Tsvetkov, S. Tu, H. Y. Tuan, M. Tucci, D. A. Tumbarello, B. Turk, V. Turk, R. F. Turner, A. A. Tveita, S. C. Tyagi, M. Ubukata, Y. Uchiyama, A. Udelnow, T. Ueno, M. Umekawa, R. Umemiya-Shirafuji, B. R. Underwood, C. Ungermann, R. P. Ureshino, R. Ushioda, V. N. Uversky, N. L. Uzcategui, T. Vaccari, M. I. Vaccaro, L. Vachova, H. Vakifahmetoglu-Norberg, R. Valdor, E. M. Valente, F. Vallette, A. M. Valverde, G. Van den Berghe, L. Van Den Bosch, G. R. van den Brink, F. G. van der Goot, I. J. van der Klei, L. J. van der Laan, W. G. van Doorn, M. van Egmond, K. L. van Golen, L. Van Kaer, M. van Lookeren Campagne, P. Vandenabeele, W. Vandenberghe, I. Vanhorebeek, I. Varela-Nieto, M. H. Vasconcelos, R. Vasko, D. G. Vavvas, I. Vega-Naredo, G. Velasco, A. D. Velentzas, P. D. Velentzas, T. Vellai, E. Vellenga, M. H. Vendelbo, K. Venkatachalam, N. Ventura, S. Ventura, P. S. Veras, M. Verdier, B. G. Vertessy, A. Viale, M. Vidal, H. Vieira, R. D. Vierstra, N. Vigneswaran, N. Vij, M. Vila, M. Villar, V. H. Villar, J. Villarroya, C. Vindis, G. Viola, M. T. Viscomi, G. Vitale, D. T. Vogl, O. V. Voitsekhovskaja, C. von Haefen, K. von Schwarzenberg, D. E. Voth, V. Vouret-Craviari, K. Vuori, J. M. Vyas, C. Waeber, C. L. Walker, M. J. Walker, J. Walter, L. Wan, X. Wan, B. Wang, C. Wang, C. Y. Wang, C. Wang, C. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H. J. Wang, H. Wang, H. G. Wang, H. Wang, H. D. Wang, J. Wang, J. Wang, M. Wang, M. Q. Wang, P. Y. Wang, P. Wang, R. C. Wang, S. Wang, T. F. Wang, X. Wang, X. J. Wang, X. W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y. J. Wang, Y. Wang, Y. Wang, Y. T. Wang, Y. Wang, Z. N. Wang, P. Wappner, C. Ward, D. M. Ward, G. Warnes, H. Watada, Y. Watanabe, K. Watase, T. E. Weaver, C. D. Weekes, J. Wei, T. Weide, C. C. Weihl, G. Weindl, S. N. Weis, L. Wen, X. Wen, Y. Wen, B. Westermann, C. M. Weyand, A. R. White, E. White, J. L. Whitton, A. J. Whitworth, J. Wiels, F. Wild, M. E. Wildenberg, T. Wileman, D. S. Wilkinson, S. Wilkinson, D. Willbold, C. Williams, K. Williams, P. R. Williamson, K. F. Winklhofer, S. S. Witkin, S. E. Wohlgemuth, T. Wollert, E. J. Wolvetang, E. Wong, G. W. Wong, R. W. Wong, V. K. Wong, E. A. Woodcock, K. L. Wright, C. Wu, D. Wu, G. S. Wu, J. Wu, J. Wu, M. Wu, M. Wu, S. Wu, W. K. Wu, Y. Wu, Z. Wu, C. P. Xavier, R. J. Xavier, G. X. Xia, T. Xia, W. Xia, Y. Xia, H. Xiao, J. Xiao, S. Xiao, W. Xiao, C. M. Xie, Z. Xie, Z. Xie, M. Xilouri, Y. Xiong, C. Xu, C. Xu, F. Xu, H. Xu, H. Xu, J. Xu, J. Xu, J. Xu, L. Xu, X. Xu, Y. Xu, Y. Xu, Z. X. Xu, Z. Xu, Y. Xue, T. Yamada, A. Yamamoto, K. Yamanaka, S. Yamashina, S. Yamashiro, B. Yan, B. Yan, X. Yan, Z. Yan, Y. Yanagi, D. S. Yang, J. M. Yang, L. Yang, M. Yang, P. M. Yang, P. Yang, Q. Yang, W. Yang, W. Y. Yang, X. Yang, Y. Yang, Y. Yang, Z. Yang, Z. Yang, M. C. Yao, P. J. Yao, X. Yao, Z. Yao, Z. Yao, L. S. Yasui, M. Ye, B. Yedvobnick, B. Yeganeh, E. S. Yeh, P. L. Yeyati, F. Yi, L. Yi, X. M. Yin, C. K. Yip, Y. M. Yoo, Y. H. Yoo, S. Y. Yoon, K. I. Yoshida, T. Yoshimori, K. H. Young, H. Yu, J. J. Yu, J. T. Yu, J. Yu, L. Yu, W. H. Yu, X. F. Yu, Z. Yu, J. Yuan, Z. M. Yuan, B. Y. Yue, J. Yue, Z. Yue, D. N. Zacks, E. Zacksenhaus, N. Zaffaroni, T. Zaglia, Z. Zakeri, V. Zecchini, J. Zeng, M. Zeng, Q. Zeng, A. S. Zervos, D. D. Zhang, F. Zhang, G. Zhang, G. C. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, J. Zhang, J. P. Zhang, L. Zhang, L. Zhang, L. Zhang, L. Zhang, M. Y. Zhang, X. Zhang, X. D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, M. Zhao, W. L. Zhao, X. Zhao, Y. G. Zhao, Y. Zhao, Y. Zhao, Y. X. Zhao, Z. Zhao, Z. J. Zhao, D. Zheng, X. L. Zheng, X. Zheng, B. Zhivotovsky, Q. Zhong, G. Z. Zhou, G. Zhou, H. Zhou, S. F. Zhou, X. J. Zhou, H. Zhu, H. Zhu, W. G. Zhu, W. Zhu, X. F. Zhu, Y. Zhu, S. M. Zhuang, X. Zhuang, E. Ziparo, C. E. Zois, T. Zoladek, W. X. Zong, A. Zorzano and S. M. Zughaier: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1), 1-222 (2016)
DOI: 10.1080/15548627.2015.1100356

150. K. Maiese: Autophagy to the Rescue. Curr Neurovasc Res, 14(3), 199 (2017)
DOI: 10.2174/1567202614666170724160119

151. K. Maiese, Z. Z. Chong, Y. C. Shang and S. Wang: Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets, 16(12), 1203-14 (2012)
DOI: 10.1517/14728222.2012.719499

152. J. Hou, Z. Z. Chong, Y. C. Shang and K. Maiese: Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res, 7(2), 95-112 (2010)
DOI: 10.2174/156720210791184899

153. K. Maiese and A. M. Vincent: Membrane asymmetry and DNA degradation: functionally distinct determinants of neuronal programmed cell death. J Neurosci Res, 59(4), 568-80 (2000)

154. K. Schutters and C. Reutelingsperger: Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis, 15(9), 1072-82 (2010)

155. Y. C. Shang, Z. Z. Chong, J. Hou and K. Maiese: Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal, 22(9), 1317-29 (2010)

156. G. B. Taveira, E. O. Mello, S. B. Souza, R. M. Monteiro, A. C. Ramos, A. O. Carvalho, R. Rodrigues, L. A. Okorokov and V. M. Gomes: Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of capases and extracelullar H(+) flux. Biosci Rep (2018)
DOI: 10.1042/bsr20180119

157. L. Wei, C. Sun, M. Lei, G. Li, L. Yi, F. Luo, Y. Li, L. Ding, Z. Liu, S. Li and P. Xu: Activation of Wnt/beta-catenin Pathway by Exogenous Wnt1 Protects SH-SY5Y Cells Against 6-Hydroxydopamine Toxicity. J Mol Neurosci, 49(1), 105-15 (2013)
DOI: 10.1007/s12031-012-9900-8

158. C. J. Williams and D. T. Dexter: Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem, 129(1), 4-20 (2014)
DOI: 10.1111/jnc.12608

159. J. Hou, S. Wang, Y. C. Shang, Z. Z. Chong and K. Maiese: Erythropoietin Employs Cell Longevity Pathways of SIRT1 to Foster Endothelial Vascular Integrity During Oxidant Stress. Curr Neurovasc Res, 8(3), 220-35 (2011)

160. S. Kim, I. H. Kang, J. B. Nam, Y. Cho, D. Y. Chung, S. H. Kim, J. S. Kim, Y. D. Cho, E. K. Hong, N. W. Sohn and J. W. Shin: Ameliorating the Effect of Astragaloside IV on Learning and Memory Deficit after Chronic Cerebral Hypoperfusion in Rats. Molecules, 20(2), 1904-21 (2015)
DOI: 10.3390/molecules20021904

161. S. L. Liu, H. X. Lin, C. Y. Lin, X. Q. Sun, L. P. Ye, F. Qiu, W. Wen, X. Hua, X. Q. Wu, J. Li, L. B. Song and L. Guo: TIMELESS confers cisplatin resistance in nasopharyngeal carcinoma by activating the Wnt/beta-catenin signaling pathway and promoting the epithelial mesenchymal transition. Cancer Lett, 402, 117-130 (2017)
DOI: 10.1016/j.canlet.2017.05.022

162. Y. Lu, T. Shen, H. Yang and W. Gu: Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway. Int J Mol Sci, 17(5) (2016)
DOI: 10.3390/ijms17050775

163. K. Maiese: The Many Facets of Cell Injury: Angiogenesis to Autophagy. Curr Neurovasc Res, 9(2), 1-2 (2012)

164. C. Dai, G. D. Ciccotosto, R. Cappai, Y. Wang, S. Tang, D. Hoyer, E. K. Schneider, T. Velkov and X. Xiao: Rapamycin confers neuroprotection against colistin-induced oxidative stress, mitochondria dysfunction and apoptosis through the activation of autophagy and mTOR/Akt/CREB signaling pathways. ACS Chem Neurosci, 9(4), 824-837 (2017)
DOI: 10.1021/acschemneuro.7b00323

165. C. Ding, J. Zhang, B. Li, Z. Ding, W. Cheng, F. Gao, Y. Zhang, Y. Xu and S. Zhang: Cornin protects SHSY5Y cells against oxygen and glucose deprivationinduced autophagy through the PI3K/Akt/mTOR pathway. Mol Med Rep, 17(1), 87-92 (2017)
DOI: 10.3892/mmr.2017.7864

166. C. Gao, H. Yu, C. Yan, W. Zhao, Y. Liu, D. Zhang, J. Li and N. Liu: X-linked inhibitor of apoptosis inhibits apoptosis and preserves the blood-brain barrier after experimental subarachnoid hemorrhage. Sci Rep, 7, 44918 (2017)
DOI: 10.1038/srep44918

167. A. Park and H. C. Koh: NF-kappaB/mTOR-mediated autophagy can regulate diquat-induced apoptosis. Arch Toxicol (2019)
DOI: 10.1007/s00204-019-02424-7

168. T. J. Bailey, S. L. Fossum, S. M. Fimbel, J. E. Montgomery and D. R. Hyde: The inhibitor of phagocytosis, O-phospho-L-serine, suppresses Muller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. Exp Eye Res, 91(5), 601-12 (2010)
DOI: 10.1016/j.exer.2010.07.017

169. Y. C. Shang, Z. Z. Chong, J. Hou and K. Maiese: FoxO3a governs early microglial proliferation and employs mitochondrial depolarization with caspase 3, 8, and 9 cleavage during oxidant induced apoptosis. Curr Neurovasc Res, 6(4), 223-38 (2009)

170. Y. J. Xin, B. Yuan, B. Yu, Y. Q. Wang, J. J. Wu, W. H. Zhou and Z. Qiu: Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress. Sci Rep, 5, 7645 (2015)
DOI: 10.1038/srep07645

171. T. Yu, L. Li, T. Chen, Z. Liu, H. Liu and Z. Li: Erythropoietin attenuates advanced glycation endproducts-induced toxicity of schwann cells in vitro. Neurochem Res, 40(4), 698-712 (2015)
DOI: 10.1007/s11064-015-1516-2

172. K. Maiese: FoxO Proteins in the Nervous System. Anal Cell Pathol (Amst), 2015, 569392 (2015)
DOI: 10.1155/2015/569392

173. T. Bombeli, A. Karsan, J. F. Tait and J. M. Harlan: Apoptotic vascular endothelial cells become procoagulant. Blood, 89(7), 2429-42 (1997)

174. Z. Z. Chong, J. Q. Kang and K. Maiese: Angiogenesis and plasticity: role of erythropoietin in vascular systems. J Hematother Stem Cell Res, 11(6), 863-71 (2002)

175. K. Maiese, Z. Z. Chong and Y. C. Shang: Raves and risks for erythropoietin. Cytokine Growth Factor Rev, 19(2), 145-155 (2008)
DOI: S1359-6101(08)00006-3

176. S. H. Lin, Z. Z. Chong and K. Maiese: Nicotinamide: A Nutritional Supplement that Provides Protection Against Neuronal and Vascular Injury. J Med Food, 4(1), 27-38 (2001)

177. K. Maiese, S. Lin and Z. Z. Chong: Elucidating neuronal and vascular injury through the cytoprotective agent nicotinamide. Curr Med Chem-Imm, Endoc. & Metab. Agents, 1(3), 257-267 (2001)

178. P. O. Koh: Nicotinamide attenuates the injury-induced decrease of hippocalcin in ischemic brain injury. Neurosci Lett, 545, 6-10 (2013)
DOI: 10.1016/j.neulet.2013.04.010

179. F. Lin, W. Xu, C. Guan, M. Zhou, W. Hong, L. Fu, D. Liu and A. Xu: Niacin protects against UVB radiation-induced apoptosis in cultured human skin keratinocytes. Int J Mol Med, 29(4), 593-600 (2012)
DOI: 10.3892/ijmm.2012.886

180. C. Zhao, W. Li, H. Duan, Z. Li, Y. Jia, S. Zhang, X. Wang, Q. Zhou and W. Shi: NAD(+) precursors protect corneal endothelial cells from UVB-induced apoptosis. Am J Physiol Cell Physiol (2020)
DOI: 10.1152/ajpcell.00445.2019

181. A. Peresypkina, A. Pazhinsky, L. Danilenko, S. Lugovskoy, M. Pokrovskii, E. Beskhmelnitsyna, N. Solovev, A. Pobeda, M. Korokin, E. Levkova, V. Gubareva, L. Korokina, O. Martynova, V. Soldatov and V. Pokrovskii: Retinoprotective Effect of 2-Ethyl-3-hydroxy-6-methylpyridine Nicotinate. Biology (Basel), 9(3) (2020)
DOI: 10.3390/biology9030045

182. W. Y. Li, J. H. Ren, N. N. Tao, L. K. Ran, X. Chen, H. Z. Zhou, B. Liu, X. S. Li, A. L. Huang and J. Chen: The SIRT1 inhibitor, nicotinamide, inhibits hepatitis B virus replication in vitro and in vivo. Arch Virol (2015)
DOI: 10.1007/s00705-015-2712-8

183. S. Preau, M. Ambler, A. Sigurta, A. Kleyman, A. Dyson, N. E. Hill, E. Boulanger and M. Singer: Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle. Am J Physiol Regul Integr Comp Physiol (2019)
DOI: 10.1152/ajpregu.00221.2018

184. Y. Wang and W. D. Le: Autophagy and Ubiquitin-Proteasome System. Adv Exp Med Biol, 1206, 527-550 (2019)
DOI: 10.1007/978-981-15-0602-4_25

185. N. Zhang and Y. Zhao: Other Molecular Mechanisms Regulating Autophagy. Adv Exp Med Biol, 1206, 261-271 (2019)
DOI: 10.1007/978-981-15-0602-4_13

186. C. Chen, Y. Lu, H. M. Siu, J. Guan, L. Zhu, S. Zhang, J. Yue and L. Zhang: Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis. Molecules, 22(6) (2017)
DOI: 10.3390/molecules22060891

187. M. Di Rosa, G. Distefano, C. Gagliano, D. Rusciano and L. Malaguarnera: Autophagy in Diabetic Retinopathy. Curr Neuropharmacol, 14(8), 810-825 (2016)

188. K. Maiese: Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res, 9(15), 1413-7 (2014)
DOI: 10.4103/1673-5374.139453

189. C. R. White, G. Datta and S. Giordano: High-Density Lipoprotein Regulation of Mitochondrial Function. Adv Exp Med Biol, 982, 407-429 (2017)
DOI: 10.1007/978-3-319-55330-6_22

190. T. E. Moors, J. J. Hoozemans, A. Ingrassia, T. Beccari, L. Parnetti, M. C. Chartier-Harlin and W. D. van de Berg: Therapeutic potential of autophagy-enhancing agents in Parkinson's disease. Mol Neurodegener, 12(1), 11 (2017)
DOI: 10.1186/s13024-017-0154-3

191. E. P. Ratliff, R. E. Mauntz, R. W. Kotzebue, A. Gonzalez, M. Achal, A. Barekat, K. A. Finley, J. M. Sparhawk, J. E. Robinson, D. R. Herr, G. L. Harris, W. J. Joiner and K. D. Finley: Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors. PLoS One, 10(7), e0132768 (2015)
DOI: 10.1371/journal.pone.0132768

192. P. B. Crino: The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol, 12(7), 379-92 (2016)
DOI: 10.1038/nrneurol.2016.81

193. C. F. Hsieh, C. K. Liu, C. T. Lee, L. E. Yu and J. Y. Wang: Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep, 9(1), 840 (2019)
DOI: 10.1038/s41598-018-37215-0

194. M. Hu, Z. Liu, P. Lv, H. Wang, Y. Zhu, Q. Qi, J. Xu and L. Gao: Nimodipine activates neuroprotective signaling events and inactivates autophages in the VCID rat hippocampus. Neurol Res, 39(10), 904-909 (2017)
DOI: 10.1080/01616412.2017.1356157

195. K. Maiese: Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J Transl Sci, 2(4), 241-247 (2016)

196. K. Maiese: Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Curr Neurovasc Res, 14(4), 415-420 (2017)
DOI: 10.2174/1567202614666171116102911

197. J. Cheng, B. J. North, T. Zhang, X. Dai, K. Tao, J. Guo and W. Wei: The emerging roles of protein homeostasis-governing pathways in Alzheimer's disease. Aging Cell, 17(5), e12801 (2018)
DOI: 10.1111/acel.12801

198. K. Han, N. Jia, Y. Zhong and X. Shang: S14G-humanin alleviates insulin resistance and increases autophagy in neurons of APP/PS1 transgenic mouse. J Cell Biochem (2017)
DOI: 10.1002/jcb.26452

199. L. Li: The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer's Disease, Based on a Mechanistic Target of Rapamycin Pathway. CNS Drugs, 31(7), 535-549 (2017)
DOI: 10.1007/s40263-017-0431-2

200. S. Saleem and S. C. Biswas: Tribbles Pseudokinase 3 Induces Both Apoptosis and Autophagy in Amyloid-beta-induced Neuronal Death. J Biol Chem, 292(7), 2571-2585 (2017)
DOI: 10.1074/jbc.M116.744730

201. Z. H. Zhang, Q. Y. Wu, R. Zheng, C. Chen, Y. Chen, Q. Liu, P. R. Hoffmann, J. Z. Ni and G. L. Song: Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer's disease mouse model. J Neurosci, 37(9), 2449-2462 (2017)
DOI: 10.1523/jneurosci.3229-16.2017

202. J. H. Lee, L. Tecedor, Y. H. Chen, A. M. Monteys, M. J. Sowada, L. M. Thompson and B. L. Davidson: Reinstating aberrant mTORC1 activity in Huntington's disease mice improves disease phenotypes. Neuron, 85(2), 303-15 (2015)
DOI: 10.1016/j.neuron.2014.12.019

203. K. Maiese: The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans, 46(2), 351-360 (2018)
DOI: 10.1042/bst20170121

204. R. L. Vidal, A. Figueroa, F. A. Court, P. Thielen, C. Molina, C. Wirth, B. Caballero, R. Kiffin, J. Segura-Aguilar, A. M. Cuervo, L. H. Glimcher and C. Hetz: Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum Mol Genet, 21(10), 2245-62 (2012)
DOI: 10.1093/hmg/dds040

205. J. Tong, Y. Lai, Y. A. Yao, X. J. Wang, Y. S. Shi, H. J. Hou, J. Y. Gu, F. Chen and X. B. Liu: Qiliqiangxin Rescues Mouse Cardiac Function by Regulating AGTR1/TRPV1-Mediated Autophagy in STZ-Induced Diabetes Mellitus. Cell Physiol Biochem, 47(4), 1365-1376 (2018)
DOI: 10.1159/000490822

206. J. Han, S. Shi, L. Min, T. Wu, W. Xia and W. Ying: NAD(+) Treatment Induces Delayed Autophagy in Neuro2a Cells Partially by Increasing Oxidative Stress. Neurochem Res, 36(12), 2270-7 (2011)
DOI: 10.1007/s11064-011-0551-x

207. S. W. Kim, J. H. Lee, J. H. Moon, U. M. Nazim, Y. J. Lee, J. W. Seol, J. Hur, S. K. Eo, J. H. Lee and S. Y. Park: Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation. Oncotarget, 7(4), 4356-68 (2016)
DOI: 10.18632/oncotarget.5374

208. M. Ferrucci, F. Biagioni, L. Ryskalin, F. Limanaqi, S. Gambardella, A. Frati and F. Fornai: Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. Int J Mol Sci, 19(9) (2018)
DOI: 10.3390/ijms19092756

209. B. H. Wang, Q. Hou, Y. Q. Lu, M. M. Jia, T. Qiu, X. H. Wang, Z. X. Zhang and Y. Jiang: Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res (2017)
DOI: 10.1016/j.brainres.2017.10.009

210. C. Shen, X. Dou, Y. Ma, W. Ma, S. Li and Z. Song: Nicotinamide protects hepatocytes against palmitate-induced lipotoxicity via SIRT1-dependent autophagy induction. Nutr Res, 40, 40-47 (2017)
DOI: 10.1016/j.nutres.2017.03.005

211. W. Li, L. Zhu, Z. B. Ruan, M. X. Wang, Y. Ren and W. Lu: Nicotinamide protects chronic hypoxic myocardial cells through regulating mTOR pathway and inducing autophagy. Eur Rev Med Pharmacol Sci, 23(12), 5503-5511 (2019)
DOI: 10.26355/eurrev_201906_18220

212. K. Maiese: Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res, 15(1), 81-91 (2018)
DOI: 10.2174/1567202615666180319151244

213. Z. Z. Chong, Y. C. Shang, S. Wang and K. Maiese: Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol, 99(2), 128-148 (2012)
DOI: 10.1016/j.pneurobio.2012.08.001

214. H. Jesko, A. Stepien, W. J. Lukiw and R. P. Strosznajder: The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol, 56(5), 3501-3521 (2019)
DOI: 10.1007/s12035-018-1286-3

215. K. Maiese: Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies. Elsevier and Academic Press, ISBN 9780128027332 (2016)

216. K. Maiese, Z. Z. Chong, Y. C. Shang and S. Wang: mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med, 19(1), 51-60 (2013)
DOI: 10.1016/j.molmed.2012.11.001

217. J. Heitman, N. R. Movva and M. N. Hall: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 253(5022), 905-9 (1991)

218. S. K. Hwang and H. H. Kim: The functions of mTOR in ischemic diseases. BMB Rep, 44(8), 506-11 (2011)

219. K. Maiese: Erythropoietin and mTOR: A "One-Two Punch" for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res, 13(4), 329-340 (2016)

220. P. B. Martinez de Morentin, N. Martinez-Sanchez, J. Roa, J. Ferno, R. Nogueiras, M. Tena-Sempere, C. Dieguez and M. Lopez: Hypothalamic mTOR: the rookie energy sensor. Curr Mol Med, 14(1), 3-21 (2014)

221. K. Maiese: Taking aim at Alzheimer's disease through the mammalian target of rapamycin. Ann Med, 46(8), 587-596 (2014)
DOI: 10.3109/07853890.2014.941921

222. Q. Xue, J. A. Nagy, E. J. Manseau, T. L. Phung, H. F. Dvorak and L. E. Benjamin: Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase. Arterioscler Thromb Vasc Biol, 29(8), 1172-8 (2009)

223. K. G. Foster, H. A. Acosta-Jaquez, Y. Romeo, B. Ekim, G. A. Soliman, A. Carriere, P. P. Roux, B. A. Ballif and D. C. Fingar: Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J Biol Chem, 285(1), 80-94 (2010)

224. L. Wang, J. C. Lawrence, Jr., T. W. Sturgill and T. E. Harris: Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J Biol Chem, 284(22), 14693-7 (2009)

225. T. R. Peterson, M. Laplante, C. C. Thoreen, Y. Sancak, S. A. Kang, W. M. Kuehl, N. S. Gray and D. M. Sabatini: DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 137(5), 873-86 (2009)

226. R. Malla, C. R. Ashby, Jr., N. K. Narayanan, B. Narayanan, J. S. Faridi and A. K. Tiwari: Proline-rich AKT substrate of 40-kDa (PRAS40) in the pathophysiology of cancer. Biochem Biophys Res Commun, 463(3), 161-6 (2015)
DOI: 10.1016/j.bbrc.2015.05.041

227. Z. Z. Chong, Y. C. Shang, S. Wang and K. Maiese: PRAS40 Is an Integral Regulatory Component of Erythropoietin mTOR Signaling and Cytoprotection. PLoS ONE, 7(9), e45456 (2012)
DOI: 10.1371/journal.pone.0045456

228. B. D. Fonseca, E. M. Smith, V. H. Lee, C. MacKintosh and C. G. Proud: PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem, 282(34), 24514-24 (2007)

229. Y. C. Shang, Z. Z. Chong, S. Wang and K. Maiese: WNT1 Inducible Signaling Pathway Protein 1 (WISP1) Targets PRAS40 to Govern beta-Amyloid Apoptotic Injury of Microglia. Curr Neurovasc Res, 9(4), 239-249 (2012)

230. H. Wang, Q. Zhang, Q. Wen, Y. Zheng, L. Philip, H. Jiang, J. Lin and W. Zheng: Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cell Signal, 24(1), 17-24 (2012)
DOI: 10.1016/j.cellsig.2011.08.010

231. X. Xiong, R. Xie, H. Zhang, L. Gu, W. Xie, M. Cheng, Z. Jian, K. Kovacina and H. Zhao: PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiol Dis, 66, 43-52 (2014)
DOI: 10.1016/j.nbd.2014.02.006

232. D. H. Kim, D. D. Sarbassov, S. M. Ali, R. R. Latek, K. V. Guntur, H. Erdjument-Bromage, P. Tempst and D. M. Sabatini: GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell, 11(4), 895-904 (2003)

233. D. A. Guertin, D. M. Stevens, C. C. Thoreen, A. A. Burds, N. Y. Kalaany, J. Moffat, M. Brown, K. J. Fitzgerald and D. M. Sabatini: Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell, 11(6), 859-71 (2006)

234. E. Jacinto, R. Loewith, A. Schmidt, S. Lin, M. A. Ruegg, A. Hall and M. N. Hall: Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 6(11), 1122-8 (2004)

235. J. M. Garcia-Martinez and D. R. Alessi: mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J, 416(3), 375-85 (2008)

236. L. R. Pearce, E. M. Sommer, K. Sakamoto, S. Wullschleger and D. R. Alessi: Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J, 436(1), 169-79 (2011)

237. L. L. Du, D. M. Chai, L. N. Zhao, X. H. Li, F. C. Zhang, H. B. Zhang, L. B. Liu, K. Wu, R. Liu, J. Z. Wang and X. W. Zhou: AMPK Activation Ameliorates Alzheimer's Disease-Like Pathology and Spatial Memory Impairment in a Streptozotocin-Induced Alzheimer's Disease Model in Rats. J Alzheimers Dis, 43(3), 775-84 (2015)
DOI: 10.3233/jad-140564

238. T. Jiang, J. T. Yu, X. C. Zhu, H. F. Wang, M. S. Tan, L. Cao, Q. Q. Zhang, L. Gao, J. Q. Shi, Y. D. Zhang and L. Tan: Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol, 171(13), 3146-57 (2014)
DOI: 10.1111/bph.12655

239. P. Chakrabarti, T. English, J. Shi, C. M. Smas and K. V. Kandror: Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes, 59(4), 775-81 (2010)

240. S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata and K. Yokono: Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes, 58(6), 1321-32 (2009)

241. R. Malla, Y. Wang, W. K. Chan, A. K. Tiwari and J. S. Faridi: Genetic ablation of PRAS40 improves glucose homeostasis via linking the AKT and mTOR pathways. Biochem Pharmacol (2015)
DOI: 10.1016/j.bcp.2015.04.016

242. Y. Li, S. Xu, A. Giles, K. Nakamura, J. W. Lee, X. Hou, G. Donmez, J. Li, Z. Luo, K. Walsh, L. Guarente and M. Zang: Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. Faseb J (2011)

243. C. Treins, S. Alliouachene, R. Hassouna, Y. Xie, M. J. Birnbaum and M. Pende: The combined deletion of S6K1 and Akt2 deteriorates glycaemic control in high fat diet. Mol Cell Biol (2012)
DOI: 10.1128/mcb.00514-12

244. R. H. Wang, H. S. Kim, C. Xiao, X. Xu, O. Gavrilova and C. X. Deng: Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest, 121(11), 4477-90 (2011)
DOI: 10.1172/jci46243

245. Y. Gu, J. Lindner, A. Kumar, W. Yuan and M. A. Magnuson: Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes, 60(3), 827-37 (2011)
DOI: 10.2337/db10-1194

246. K. Maiese: Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res, 14(1), 82-88 (2017)
DOI: 10.2174/1567202613666161129112822

247. C. A. Peixoto, W. H. de Oliveira, S. M. da Rocha Araujo and A. K. S. Nunes: AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol (2017)
DOI: 10.1016/j.expneurol.2017.08.013

248. T. Sato, A. Nakashima, L. Guo and F. Tamanoi: Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem, 284(19), 12783-91 (2009)

249. K. Inoki, T. Zhu and K. L. Guan: TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577-90 (2003)

250. Z. Z. Chong and K. Maiese: Mammalian Target of Rapamycin Signaling in Diabetic Cardiovascular Disease. Cardiovasc Diabetol, 11(1), 45 (2012)
DOI: 10.1186/1475-2840-11-45

251. J. Zhou, J. Wu, F. Zheng, M. Jin and H. Li: Glucagon-like peptide-1 analog-mediated protection against cholesterol-induced apoptosis via mammalian target of rapamycin activation in pancreatic betaTC-6 cells -1mTORbetaTC-6. J Diabetes, 7(2), 231-9 (2015)
DOI: 10.1111/1753-0407.12177

252. X. Y. Miao, Z. Y. Gu, P. Liu, Y. Hu, L. Li, Y. P. Gong, H. Shu, Y. Liu and C. L. Li: The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides, 39, 71-9 (2013)
DOI: 10.1016/j.peptides.2012.10.006

253. Y. W. Liu, L. Zhang, Y. Li, Y. Q. Cheng, X. Zhu, F. Zhang and X. X. Yin: Activation of mTOR signaling mediates the increased expression of AChE in high glucose condition: in vitro and in vivo evidences. Mol Neurobiol (2015)
DOI: 10.1007/s12035-015-9425-6

254. M. C. Crespo, J. Tome-Carneiro, C. Pintado, A. Davalos, F. Visioli and E. Burgos-Ramos: Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer's disease. Biofactors, 43(4) (2017)
DOI: 10.1002/biof.1356

255. C. H. Jung, D. H. Lee, J. Ahn, H. Lee, W. H. Choi, Y. J. Jang and T. Y. Ha: gamma-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake. Nutrients, 7(6), 4851-4861 (2015)
DOI: 10.3390/nu7064851

256. E. Pasini, V. Flati, S. Paiardi, D. Rizzoni, E. Porteri, R. Aquilani, D. Assanelli, G. Corsetti, S. Speca, R. Rezzani, C. De Ciuceis and E. Agabiti-Rosei: Intracellular molecular effects of insulin resistance in patients with metabolic syndrome. Cardiovasc Diabetol, 9, 46 (2010)

257. C. Chen, Y. Xu and Y. Song: IGF-1 gene-modified muscle-derived stem cells are resistant to oxidative stress via enhanced activation of IGF-1R/PI3K/AKT signaling and secretion of VEGF. Mol Cell Biochem, 386(1-2), 167-75 (2014)
DOI: 10.1007/s11010-013-1855-8

258. G. Nagel, R. S. Peter, A. Rosenbohm, W. Koenig, L. Dupuis, D. Rothenbacher and A. C. Ludolph: Association of Insulin-like Growth Factor 1 Concentrations with Risk for and Prognosis of Amyotrophic Lateral Sclerosis - Results from the ALS Registry Swabia. Sci Rep, 10(1), 736 (2020)
DOI: 10.1038/s41598-020-57744-x

259. Z. Z. Chong, J. Q. Kang and K. Maiese: Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation, 106(23), 2973-9 (2002)

260. Z. Z. Chong, J. Q. Kang and K. Maiese: Apaf-1, Bcl-xL, Cytochrome c, and Caspase-9 Form the Critical Elements for Cerebral Vascular Protection by Erythropoietin. J Cereb Blood Flow Metab, 23(3), 320-30 (2003)

261. L. Cui, J. Guo, Q. Zhang, J. Yin, J. Li, W. Zhou, T. Zhang, H. Yuan, J. Zhao, L. Zhang, P. L. Carmichael and S. Peng: Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol Lett, 275, 28-38 (2017)
DOI: 10.1016/j.toxlet.2017.04.018

262. Q. Li, Y. Han, J. Du, H. Jin, J. Zhang, M. Niu and J. Qin: Recombinant Human Erythropoietin Protects Against Hippocampal Damage in Developing Rats with Seizures by Modulating Autophagy via the S6 Protein in a Time-Dependent Manner. Neurochem Res (2017)
DOI: 10.1007/s11064-017-2443-1

263. K. Maiese: Regeneration in the nervous system with erythropoietin. Front Biosci (Landmark Ed), 21, 561-96 (2016)

264. K. Maiese: Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin. Curr Neurovasc Res, 14(2), 184-189 (2017)
DOI: 10.2174/1567202614666170313105337

265. K. Maiese, F. Li and Z. Z. Chong: New avenues of exploration for erythropoietin. Jama, 293(1), 90-5 (2005)
DOI: 293/1/90

266. M. Shi, B. Flores, P. Li, N. Gillings, K. L. McMillan, J. Ye, L. J. Huang, S. S. Sidhu, Y. P. Zhong, M. T. Grompe, P. R. Streeter, O. W. Moe and M. C. Hu: Effects of Erythropoietin Receptor Activity on Angiogenesis, Tubular Injury and Fibrosis in Acute Kidney Injury: A "U-Shaped" Relationship. Am J Physiol Renal Physiol, ajprenal 00306 2017 (2017)
DOI: 10.1152/ajprenal.00306.2017

267. M. Vinberg, P. Hojman, B. K. Pedersen, L. V. Kessing and K. W. Miskowiak: Effects of erythropoietin on body composition and fat-glucose metabolism in patients with affective disorders. Acta Neuropsychiatr, 1-8 (2018)
DOI: 10.1017/neu.2018.16

268. S. Wang, C. Zhang, J. Li, S. Niyazi, L. Zheng, M. Xu, R. Rong, C. Yang and T. Zhu: Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis, 8(4), e2725 (2017)
DOI: 10.1038/cddis.2017.104

269. T. Xu, H. Jin, Y. Lao, P. Wang, S. Zhang, H. Ruan, Q. Mao, L. Zhou, L. Xiao, P. Tong and C. Wu: Administration of erythropoietin prevents bone loss in osteonecrosis of the femoral head in mice. Mol Med Rep, 16(6), 8755-8762 (2017)
DOI: 10.3892/mmr.2017.7735

270. Y. B. Yu, K. H. Su, Y. R. Kou, B. C. Guo, K. I. Lee, J. Wei and T. S. Lee: Role of transient receptor potential vanilloid 1 in regulating erythropoietin-induced activation of endothelial nitric oxide synthase. Acta Physiol (Oxf), 219(2), 465-477 (2017)
DOI: 10.1111/apha.12723

271. W. Jang, H. J. Kim, H. Li, K. D. Jo, M. K. Lee and H. O. Yang: The Neuroprotective Effect of Erythropoietin on Rotenone-Induced Neurotoxicity in SH-SY5Y Cells Through the Induction of Autophagy. Mol Neurobiol, 53(6), 3812-3821 (2015)
DOI: 10.1007/s12035-015-9316-x

272. H. J. Lee, S. H. Koh, K. M. Song, I. J. Seol and H. K. Park: The Akt/mTOR/p70S6K Pathway Is Involved in the Neuroprotective Effect of Erythropoietin on Hypoxic/Ischemic Brain Injury in a Neonatal Rat Model. Neonatology, 110(2), 93-100 (2016)
DOI: 10.1159/000444360

273. K. Maiese, Z. Z. Chong, Y. C. Shang and S. Wang: Erythropoietin: new directions for the nervous system. Int J Mol Sci, 13(9), 11102-29 (2012)
DOI: 10.3390/ijms130911102

274. Y. C. Shang, Z. Z. Chong, S. Wang and K. Maiese: Erythropoietin and Wnt1 Govern Pathways of mTOR, Apaf-1, and XIAP in Inflammatory Microglia. Curr Neurovasc Res, 8(4), 270-285 (2011)

275. Y. C. Shang, Z. Z. Chong, S. Wang and K. Maiese: Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY), 4(3), 187-201 (2012)

276. G. B. Wang, Y. L. Ni, X. P. Zhou and W. F. Zhang: The AKT/mTOR pathway mediates neuronal protective effects of erythropoietin in sepsis. Mol Cell Biochem, 385(1-2), 125-32 (2014)
DOI: 10.1007/s11010-013-1821-5

277. P. Esmaeili Tazangi, S. M. Moosavi, M. Shabani and M. Haghani: Erythropoietin improves synaptic plasticity and memory deficits by decrease of the neurotransmitter release probability in the rat model of Alzheimer's disease. Pharmacol Biochem Behav, 130, 15-21 (2015)
DOI: 10.1016/j.pbb.2014.12.011

278. Y. P. Li, G. J. Yang, L. Jin, H. M. Yang, J. Chen, G. S. Chai and L. Wang: Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid beta42 in mice. Brain Res, 1618, 159-67 (2015)
DOI: 10.1016/j.brainres.2015.05.031

279. J. Sun, J. M. Martin, V. Vanderpoel and R. K. Sumbria: The Promises and Challenges of Erythropoietin for Treatment of Alzheimer's Disease. Neuromolecular Med (2019)
DOI: 10.1007/s12017-019-08524-y

280. K. Maiese: Preserving Brain Function During Development and Aging with Erythropoietin. Curr Neurovasc Res (2019)
DOI: 10.2174/1567202616999190821143340

281. Z. Z. Chong, J. Hou, Y. C. Shang, S. Wang and K. Maiese: EPO Relies upon Novel Signaling of Wnt1 that Requires Akt1, FoxO3a, GSK-3beta, and beta-Catenin to Foster Vascular Integrity During Experimental Diabetes. Curr Neurovasc Res, 8(2), 103-20 (2011)

282. Z. Z. Chong, Y. C. Shang and K. Maiese: Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling. Curr Neurovasc Res, 4(3), 194-204 (2007)

283. D. Gradinaru, D. Margina, M. Ilie, C. Borsa, C. Ionescu and G. I. Prada: Correlation between erythropoietin serum levels and erythrocyte susceptibility to lipid peroxidation in elderly with type 2 diabetes. Acta Physiol Hung, 102(4), 400-8 (2015)
DOI: 10.1556/036.102.2015.4.7

284. S. Hamed, C. L. Bennett, C. Demiot, Y. Ullmann, L. Teot and A. Desmouliere: Erythropoietin, a novel repurposed drug: an innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen, 22(1), 23-33 (2014)
DOI: 10.1111/wrr.12135

285. A. Montesano, A. R. Bonfigli, M. De Luca, P. Crocco, P. Garagnani, E. Marasco, C. Pirazzini, C. Giuliani, F. Romagnoli, C. Franceschi, G. Passarino, R. Testa, F. Olivieri and G. Rose: Erythropoietin (EPO) haplotype associated with all-cause mortality in a cohort of Italian patients with Type-2 Diabetes. Sci Rep, 9(1), 10395 (2019)
DOI: 10.1038/s41598-019-46894-2

286. H. S. Niu, C. H. Chang, C. S. Niu, J. T. Cheng and K. S. Lee: Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats. Drug Des Devel Ther, 10, 1877-84 (2016)
DOI: 10.2147/dddt.s105867

287. F. Gallyas, Jr., B. Sumegi and C. Szabo: Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel), 12(3) (2020)
DOI: 10.3390/cancers12030532

288. Y. R. Pan, J. Y. Song, B. Fan, Y. Wang, L. Che, S. M. Zhang, Y. X. Chang, C. He and G. Y. Li: mTOR may interact with PARP-1 to regulate visible light-induced parthanatos in photoreceptors. Cell Commun Signal, 18(1), 27 (2020)
DOI: 10.1186/s12964-019-0498-0

289. M. S. Satoh and T. Lindahl: Role of poly(ADP-ribose) formation in DNA repair. Nature, 356(6367), 356-8 (1992)

290. J. Saldeen and N. Welsh: Nicotinamide-induced apoptosis in insulin producing cells is associated with cleavage of poly(ADP-ribose) polymerase. Mol Cell Endocrinol, 139(1-2), 99-107 (1998)

291. S. Love, R. Barber and G. K. Wilcock: Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain, 122 ( Pt 2), 247-53 (1999)

292. Y. F. Lai, L. Wang and W. Y. Liu: Nicotinamide pretreatment alleviates mitochondrial stress and protects hypoxic myocardial cells via AMPK pathway. Eur Rev Med Pharmacol Sci, 23(4), 1797-1806 (2019)
DOI: 10.26355/eurrev_201902_17143

293. N. Moroz, J. J. Carmona, E. Anderson, A. C. Hart, D. A. Sinclair and T. K. Blackwell: Dietary restriction involves NAD -dependent mechanisms and a shift toward oxidative metabolism. Aging Cell, 13(6), 1075-1085 (2014)
DOI: 10.1111/acel.12273

294. P. Liu, X. Yang, C. Hei, Y. Meli, J. Niu, T. Sun and P. A. Li: Rapamycin Reduced Ischemic Brain Damage in Diabetic Animals Is Associated with Suppressions of mTOR and ERK1/2 Signaling. Int J Biol Sci, 12(8), 1032-40 (2016)
DOI: 10.7150/ijbs.15624

295. H. Zhao, Z. C. Wang, K. F. Wang and X. Y. Chen: Abeta peptide secretion is reduced by Radix Polygalaeinduced autophagy via activation of the AMPK/mTOR pathway. Mol Med Rep, 12(2), 2771-2776 (2015)
DOI: 10.3892/mmr.2015.3781

296. K. Maiese: Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol, 82(5), 1245-1266 (2016)
DOI: 10.1111/bcp.12804

297. Y. Liu, R. Palanivel, E. Rai, M. Park, T. V. Gabor, M. P. Scheid, A. Xu and G. Sweeney: Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high fat diet feeding in mice. Diabetes, 64(1), 36-48 (2014)
DOI: 10.2337/db14-0267

298. M. J. Stevens, F. Li, V. R. Drel, O. I. Abatan, H. Kim, D. Burnett, D. Larkin and I. G. Obrosova: Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther, 320(1), 458-64 (2007)

299. K. A. Weikel, J. M. Cacicedo, N. B. Ruderman and Y. Ido: Knockdown of GSK3beta Increases Basal Autophagy and AMPK Signaling in Nutrient-laden Human Aortic Endothelial Cells. Biosci Rep, 36(5), pii e00382 (2016)
DOI: 10.1042/bsr20160174

300. Y. Dong, H. Chen, J. Gao, Y. Liu, J. Li and J. Wang: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol, 136, 27-41 (2019)
DOI: 10.1016/j.yjmcc.2019.09.001

301. H. Shokri Afra, M. Zangooei, R. Meshkani, M. H. Ghahremani, D. Ilbeigi, A. Khedri, S. Shahmohamadnejad, S. Khaghani and M. Nourbakhsh: Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells. J Physiol Biochem (2019)
DOI: 10.1007/s13105-019-00678-4

302. D. Zhao, X. Sun, S. Lv, M. Sun, H. Guo, Y. Zhai, Z. Wang, P. Dai, L. Zheng, M. Ye and X. Wang: Salidroside attenuates oxidized lowdensity lipoproteininduced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med (2019)
DOI: 10.3892/ijmm.2019.4153

303. H. Zhang, X. Yang, X. Pang, Z. Zhao, H. Yu and H. Zhou: Genistein protects against ox-LDL-induced senescence through enhancing SIRT1/LKB1/AMPK-mediated autophagy flux in HUVECs. Mol Cell Biochem, 455(1) (2019)
DOI: 10.1007/s11010-018-3476-8

304. A. Kalender, A. Selvaraj, S. Y. Kim, P. Gulati, S. Brule, B. Viollet, B. E. Kemp, N. Bardeesy, P. Dennis, J. J. Schlager, A. Marette, S. C. Kozma and G. Thomas: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab, 11(5), 390-401 (2010)
DOI: 10.1016/j.cmet.2010.03.014

305. C. He, H. Zhu, H. Li, M. H. Zou and Z. Xie: Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes, 62(4), 1270-81 (2013)
DOI: 10.2337/db12-0533

306. S. S. Oda: Metformin Protects against Experimental Acrylamide Neuropathy in Rats. Drug Dev Res (2017)
DOI: 10.1002/ddr.21400

307. M. A. Zimmerman, C. D. Biggers and P. A. Li: Rapamycin treatment increases hippocampal cell viability in an mTOR-independent manner during exposure to hypoxia mimetic, cobalt chloride. BMC Neurosci, 19(1), 82 (2018)
DOI: 10.1186/s12868-018-0482-4

308. P. Hu, D. Lai, P. Lu, J. Gao and H. He: ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int J Mol Med, 29(4), 613-8 (2012)
DOI: 10.3892/ijmm.2012.891

309. Y. Lee, Y. Hong, S. R. Lee and K. T. Chang: Autophagy contributes to retardation of cardiac growth in diabetic rats. Lab Anim Res, 28(2), 99-107 (2012)
DOI: 10.5625/lar.2012.28.2.9.9

310. L. Martino, M. Masini, M. Novelli, P. Beffy, M. Bugliani, L. Marselli, P. Masiello, P. Marchetti and V. De Tata: Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets. PLoS ONE, 7(5), e36188 (2012)
DOI: 10.1371/journal.pone.0036188

311. K. A. Kim, Y. J. Shin, M. Akram, E. S. Kim, K. W. Choi, H. Suh, C. H. Lee and O. N. Bae: High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment. Biol Pharm Bull, 37(7), 1248-52 (2014)

312. L. Wang, W. Wu, J. Chen, Y. Li, M. Xu and Y. Cai: miR122 and miR199 synergistically promote autophagy in oral lichen planus by targeting the Akt/mTOR pathway. Int J Mol Med (2019)
DOI: 10.3892/ijmm.2019.4068

313. M. Ka, A. L. Smith and W. Y. Kim: MTOR controls genesis and autophagy of GABAergic interneurons during brain development. Autophagy, 0 (2017)
DOI: 10.1080/15548627.2017.1327927

314. B. Yin, H. Liang, Y. Chen, K. Chu, L. Huang, L. Fang, E. Matro, W. Jiang and B. Luo: EGB1212 post-treatment ameliorates hippocampal CA1 neuronal death and memory impairment induced by transient global cerebral ischemia/reperfusion. Am J Chin Med, 41(6), 1329-41 (2013)
DOI: 10.1142/s0192415x13500894

315. M. Dorvash, M. Farahmandnia and I. Tavassoly: A Systems Biology Roadmap to Decode mTOR Control System in Cancer. Interdiscip Sci, 12(1), 1-11 (2020)
DOI: 10.1007/s12539-019-00347-6

316. K. Maiese: Dissecting the Biological Effects of Isoflurane through the Mechanistic Target of Rapamycin (mTOR) and microRNAs (miRNAs). Curr Neurovasc Res, 16(5) (2019)
DOI: 10.2174/1567202616999191024151901

317. M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, O. Pappo, M. Karaca, J. Castel, M. F. Berthault, C. Magnan, E. Cerasi, N. Kaiser and G. Leibowitz: mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes, 57(4), 945-57 (2008)

318. K. Sataranatarajan, Y. Ikeno, A. Bokov, D. Feliers, H. Yalamanchili, H. J. Lee, M. M. Mariappan, H. Tabatabai-Mir, V. Diaz, S. Prasad, M. A. Javors, G. Ghosh Choudhury, G. B. Hubbard, J. L. Barnes, A. Richardson and B. S. Kasinath: Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes. J Gerontol A Biol Sci Med Sci, 71(7), 850-857 (2016)
DOI: 10.1093/gerona/glv170

319. N. Deblon, L. Bourgoin, C. Veyrat-Durebex, M. Peyrou, M. Vinciguerra, A. Caillon, C. Maeder, M. Fournier, X. Montet, F. Rohner-Jeanrenaud and M. Foti: Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol, 165(7), 2325-40 (2012)
DOI: 10.1111/j.1476-5381.2011.01716.x

320. S. Kang, E. R. Chemaly, R. J. Hajjar and D. Lebeche: Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem, 286(21), 18465-73 (2011)

321. A. Weckman, A. Di Ieva, F. Rotondo, L. V. Syro, L. D. Ortiz, K. Kovacs and M. D. Cusimano: Autophagy in the endocrine glands. J Mol Endocrinol, 52(2), R151-63 (2014)
DOI: 10.1530/jme-13-0241

322. Y. M. Lim, H. Lim, K. Y. Hur, W. Quan, H. Y. Lee, H. Cheon, D. Ryu, S. H. Koo, H. L. Kim, J. Kim, M. Komatsu and M. S. Lee: Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun, 5, 4934 (2014)
DOI: 10.1038/ncomms5934

323. L. Ma, R. Fu, Z. Duan, J. Lu, J. Gao, L. Tian, Z. Lv, Z. Chen, J. Han, L. Jia and L. Wang: Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract (2016)
DOI: 10.1016/j.prp.2016.02.001

324. Z. Liu, V. Stanojevic, L. J. Brindamour and J. F. Habener: GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic beta-cells from glucolipotoxicity. J Endocrinol, 213(2), 143-54 (2012)
DOI: 10.1530/joe-11-0328

325. C. He, M. C. Bassik, V. Moresi, K. Sun, Y. Wei, Z. Zou, Z. An, J. Loh, J. Fisher, Q. Sun, S. Korsmeyer, M. Packer, H. I. May, J. A. Hill, H. W. Virgin, C. Gilpin, G. Xiao, R. Bassel-Duby, P. E. Scherer and B. Levine: Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382), 511-5 (2012)
DOI: 10.1038/nature10758

326. C. L. Chung, I. Lawrence, M. Hoffman, D. Elgindi, K. Nadhan, M. Potnis, A. Jin, C. Sershon, R. Binnebose, A. Lorenzini and C. Sell: Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience, 41, 6 (2019)
DOI: 10.1007/s11357-019-00113-y

327. G. Xu, H. Shen, E. Nibona, K. Wu, X. Ke, M. A. Al Hafiz, X. Liang, X. Zhong, Q. Zhou, C. Qi and H. Zhao: Fundc1 is necessary for proper body axis formation during embryogenesis in zebrafish. Sci Rep, 9(1), 18910 (2019)
DOI: 10.1038/s41598-019-55415-0

328. N. Mu, Y. Lei, Y. Wang, Y. Wang, Q. Duan, G. Ma, X. Liu and L. Su: Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis (2019)
DOI: 10.1007/s10495-019-01559-3

329. L. Zhou, W. Gao, K. Wang, Z. Huang, L. Zhang, Z. Zhang, J. Zhou, E. C. Nice and C. Huang: Brefeldin A inhibits colorectal cancer growth by triggering Bip/Akt-regulated autophagy. Faseb j, fj201801983R (2019)
DOI: 10.1096/fj.201801983R

330. K. Maiese, Y. C. Shang, Z. Z. Chong and J. Hou: Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res, 7(1), 59-64 (2010)
DOI: BSP/CNR/E-Pub/00008

Abbreviations: AD: Alzheimer's disease, AMPK: AMP activated protein kinase, Atg: Autophagic related genes, Deptor: DEP domain-containing mTOR interacting protein, DM: Diabetes mellitus, EPO: Erythropoietin, 4EBP1: Eukaryotic initiation factor 4E (eIF4E: -binding protein 1, ERKs: Extracellular signal-regulated kinases, TSC1/TSC2: Hamartin (tuberous sclerosis 1: /tuberin (tuberous sclerosis 2: , IRS-1: Insulin receptor substrate 1, mLST8: Mammalian lethal with Sec13 protein 8, termed mLST8, mTOR: Mechanistic target of rapamycin, mTORC1: mTOR Complex 1, mTORC2: mTOR Complex 2, NCDs: Non-communicable diseases, p70S6K: p70 ribosomal S6 kinase, PARP: poly (ADP-ribose) polymerase (PARP), PS: Phosphatidylserine, PDK1: Phosphoinositide-dependent kinase 1, PRAS40: Proline rich Akt substrate 40 kDa, Akt: Protein kinase B, SIRT1: Silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae:, US: United States, USD: United States dollars

Key Words: Alzheimer’s disease, AMPK, Apoptosis, Autophagy, Dementia, Diabetes Mellitus, Erythropoietin, Nicotinamide, mTOR, Oxidative Stress, PARP, Rapamycin, Sirtuin, SIRT1, Review

Send correspondence to: Kenneth Maiese, Cellular and Molecular Signaling, New York, New York 10022, E-mail: wntin75@yahoo.com