[Frontiers in Bioscience, Landmark, 25, 1617-1635, March 1, 2020]

Role of kinases in virulence and pathogenesis of protozoan parasite E. Histolytica

Azhar Ahmad2, Shalini Mishra1, Somlata2, Samudrala Gourinath1

1Jawaharlal Nehru University, New Delhi, 110067, India., 2Jamia Millia Islamia, New Delhi, 110025, India


1. Abstract
2. Introduction
3. Kinome of E. histolytica
4. Transmembrane kinases involved as a receptor
5. Phosphoinositide kinases
6. CAM-like kinases involved in phagocytosis
7. Alpha kinases involved in the virulence of E. histolytica
8. AGC Family Kinases
9. P21 activated kinase family (EhPAK)
10. Role of other kinases in the virulence of E. histolytica
11. Discussion
12. Acknowledgments
13. References


Protein kinases are known to regulate several cellular processes like metabolism, motility and endocytosis through phosphorylation of specific target proteins which forms a communication system relaying extracellular signals to intracellular milieu for an adaptive response. One of the protozoan parasite Entamoeba histolytica, which causes amoebiasis and is one of the prominent reason for causing diarrhoea in infants of developing countries, where it remains the third leading cause of deaths in infants(1). The genome of this parasite codes for 331 putative protein kinases which accounts for 3.7% of the proteome. The kinome of the parasite is composed of several conserved and as well as kinase with unusual domain architecture. About one-third of kinome codes for transmembrane kinases (TMK) which is proposed to help the parasite to sense and adapt to the gut environment which is constantly changing. Many kinases are known to be involved in virulence but, the kinome of this important parasite is unexplored. In this review, we present an overview of E. histolytica kinases and their role in amoebic biology understood till now.


1. D. T. Shirley, L. Farr, K. Watanabe and S. Moonah: A Review of the Global Burden, New Diagnostics, and Current Therapeutics for Amebiasis. Open Forum Infect Dis, 5(7), ofy161 (2018)
DOI: 10.1093/ofid/ofy161

2. C. D. Huston: Parasite and host contributions to the pathogenesis of amebic colitis. Trends Parasitol, 20(1), 23-6 (2004)
DOI: 10.1016/j.pt.2003.10.013

3. C. A. Gilchrist, S. E. Petri, B. N. Schneider, D. J. Reichman, N. Jiang, S. Begum, K. Watanabe, C. S. Jansen, K. P. Elliott, S. L. Burgess, J. Z. Ma, M. Alam, M. Kabir, R. Haque and W. A. Petri, Jr.: Role of the Gut Microbiota of Children in Diarrhea Due to the Protozoan Parasite Entamoeba histolytica. J Infect Dis, 213(10), 1579-85 (2016)
DOI: 10.1093/infdis/jiv772

4. R. Bracha and D. Mirelman: Virulence of Entamoeba histolytica trophozoites. Effects of bacteria, microaerobic conditions, and metronidazole. J Exp Med, 160(2), 353-68 (1984)
DOI: 10.1084/jem.160.2.353

5. M. R. Kasper, A. G. Lescano, C. Lucas, D. Gilles, B. J. Biese, G. Stolovitz and E. J. Reaves: Diarrhea outbreak during U.S. military training in El Salvador. PLoS One, 7(7), e40404 (2012)
DOI: 10.1371/journal.pone.0040404

6. C. C. Hung, S. Y. Chang and D. D. Ji: Entamoeba histolytica infection in men who have sex with men. Lancet Infect Dis, 12(9), 729-36 (2012)
DOI: 10.1016/S1473-3099(12)70147-0

7. W. A. Petri, Jr., R. D. Smith, P. H. Schlesinger, C. F. Murphy and J. I. Ravdin: Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica. J Clin Invest, 80(5), 1238-44 (1987)
DOI: 10.1172/JCI113198

8. M. A. Rodriguez and E. Orozco: Isolation and characterization of phagocytosis- and virulence-deficient mutants of Entamoeba histolytica. J Infect Dis, 154(1), 27-32 (1986)
DOI: 10.1093/infdis/154.1.27

9. K. S. Ralston and W. A. Petri, Jr.: Tissue destruction and invasion by Entamoeba histolytica. Trends Parasitol, 27(6), 254-63 (2011)
DOI: 10.1016/j.pt.2011.02.006

10. A. Vaithilingam, J. E. Teixeira, P. J. Miller, B. T. Heron and C. D. Huston: Entamoeba histolytica cell surface calreticulin binds human c1q and functions in amebic phagocytosis of host cells. Infect Immun, 80(6), 2008-18 (2012)
DOI: 10.1128/IAI.06287-11

11. M. Leippe and R. Herbst: Ancient weapons for attack and defense: the pore-forming polypeptides of pathogenic enteric and free-living amoeboid protozoa. J Eukaryot Microbiol, 51(5), 516-21 (2004)
DOI: 10.1111/j.1550-7408.2004.tb00286.x

12. M. Leippe, S. Ebel, O. L. Schoenberger, R. D. Horstmann and H. J. Muller-Eberhard: Pore-forming peptide of pathogenic Entamoeba histolytica. Proc Natl Acad Sci U S A, 88(17), 7659-63 (1991)
DOI: 10.1073/pnas.88.17.7659

13. Somlata, S. Bhattacharya and A. Bhattacharya: A C2 domain protein kinase initiates phagocytosis in the protozoan parasite Entamoeba histolytica. Nat Commun, 2, 230 (2011)
DOI: 10.1038/ncomms1199

14. M. S. Mansuri, S. Bhattacharya and A. Bhattacharya: A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog, 10(10), e1004411 (2014)
DOI: 10.1371/journal.ppat.1004411

15. K. S. Ralston, M. D. Solga, N. M. Mackey-Lawrence, Somlata, A. Bhattacharya and W. A. Petri, Jr.: Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature, 508(7497), 526-30 (2014)
DOI: 10.1038/nature13242

16. Somlata, K. Nakada-Tsukui and T. Nozaki: AGC family kinase 1 participates in trogocytosis but not in phagocytosis in Entamoeba histolytica. Nat Commun, 8(1), 101 (2017)
DOI: 10.1038/s41467-017-00199-y

17. C. Ximenez, P. Moran, L. Rojas, A. Valadez and A. Gomez: Reassessment of the epidemiology of amebiasis: state of the art. Infect Genet Evol, 9(6), 1023-32 (2009)
DOI: 10.1016/j.meegid.2009.06.008

18. K. Anamika, A. Bhattacharya and N. Srinivasan: Analysis of the protein kinome of Entamoeba histolytica. Proteins, 71(2), 995-1006 (2008)
DOI: 10.1002/prot.21790

19. K. J. Koller, F. J. de Sauvage, D. G. Lowe and D. V. Goeddel: Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol, 12(6), 2581-90 (1992)
DOI: 10.1128/MCB.12.6.2581

20. P. Saharinen, K. Takaluoma and O. Silvennoinen: Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol, 20(10), 3387-95 (2000)
DOI: 10.1128/MCB.20.10.3387-3395.2000

21. C. Doerig, L. Meijer and J. C. Mottram: Protein kinases as drug targets in parasitic protozoa. Trends Parasitol, 18(8), 366-71 (2002)
DOI: 10.1016/S1471-4922(02)02321-8

22. D. A. Enke, P. Kaldis, J. K. Holmes and M. J. Solomon: The CDK-activating kinase (Cak1p) from budding yeast has an unusual ATP-binding pocket. J Biol Chem, 274(4), 1949-56 (1999)
DOI: 10.1074/jbc.274.4.1949

23. S. K. Hanks and T. Hunter: Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J, 9(8), 576-96 (1995)
DOI: 10.1096/fasebj.9.8.7768349

24. P. Ward, L. Equinet, J. Packer and C. Doerig: Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics, 5, 79 (2004)
DOI: 10.1186/1471-2164-5-79

25. Anamika, N. Srinivasan and A. Krupa: A genomic perspective of protein kinases in Plasmodium falciparum. Proteins, 58(1), 180-9 (2005)
DOI: 10.1002/prot.20278

26. V. S. Gowri, K. G. Tina, O. Krishnadev and N. Srinivasan: Strategies for the effective identification of remotely related sequences in multiple PSSM search approach. Proteins, 67(4), 789-94 (2007)
DOI: 10.1002/prot.21356

27. A. Krupa and N. Srinivasan: The repertoire of protein kinases encoded in the draft version of the human genome: atypical variations and uncommon domain combinations. Genome Biol, 3(12), RESEARCH0066 (2002)
DOI: 10.1186/gb-2002-3-12-research0066

28. D. L. Beck, D. R. Boettner, B. Dragulev, K. Ready, T. Nozaki and W. A. Petri, Jr.: Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell, 4(4), 722-32 (2005)
DOI: 10.1128/EC.4.4.722-732.2005

29. G. Manning, D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam: The protein kinase complement of the human genome. Science, 298(5600), 1912-34 (2002)
DOI: 10.1126/science.1075762

30. A. Mehra, J. Fredrick, W. A. Petri, Jr., S. Bhattacharya and A. Bhattacharya: Expression and function of a family of transmembrane kinases from the protozoan parasite Entamoeba histolytica. Infect Immun, 74(9), 5341-51 (2006)
DOI: 10.1128/IAI.00025-06

31. S. Shrimal, S. Bhattacharya and A. Bhattacharya: Serum-dependent selective expression of EhTMKB1-9, a member of Entamoeba histolytica B1 family of transmembrane kinases. PLoS Pathog, 6(6), e1000929 (2010)
DOI: 10.1371/journal.ppat.1000929

32. S. Shrimal, A. Saha, S. Bhattacharya and A. Bhattacharya: Lipids induce expression of serum-responsive transmembrane kinase EhTMKB1-9 in an early branching eukaryote Entamoeba histolytica. Scientific Reports, 2, 333 (2012)
DOI: 10.1038/srep00333

33. D. R. Boettner, C. D. Huston, A. S. Linford, S. N. Buss, E. Houpt, N. E. Sherman and W. A. Petri, Jr.: Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family. PLoS Pathog, 4(1), e8 (2008)
DOI: 10.1371/journal.ppat.0040008

34. N. C. Christy, S. N. Buss and W. A. Petri, Jr.: Common pathways for receptor-mediated ingestion of Escherichia coli and LDL cholesterol by Entamoeba histolytica regulated in part by transmembrane kinase 39. Int J Parasitol, 42(4), 393-400 (2012)
DOI: 10.1016/j.ijpara.2012.02.009

35. A. Toker: The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol, 10(2), 254-61 (1998)
DOI: 10.1016/S0955-0674(98)80148-8

36. Y. A. Byekova, R. R. Powell, B. H. Welter and L. A. Temesvari: Localization of phosphatidylinositol (3,4,5)-trisphosphate to phagosomes in entamoeba histolytica achieved using glutathione S-transferase- and green fluorescent protein-tagged lipid biosensors. Infect Immun, 78(1), 125-37 (2010)
DOI: 10.1128/IAI.00719-09

37. R. A. Anderson, I. V. Boronenkov, S. D. Doughman, J. Kunz and J. C. Loijens: Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem, 274(15), 9907-10 (1999)
DOI: 10.1074/jbc.274.15.9907

38. D. A. Fruman, R. E. Meyers and L. C. Cantley: Phosphoinositide kinases. Annu Rev Biochem, 67, 481-507 (1998)
DOI: 10.1146/annurev.biochem.67.1.481

39. S. Sharma, S. Bhattacharya and A. Bhattacharya: PtdIns(4,5)P2 is generated by a novel phosphatidylinositol 4-phosphate 5-kinase in the protist parasite Entamoeba histolytica. FEBS J, 286(11), 2216-2234 (2019)
DOI: 10.1111/febs.14804

40. J. N. Heck, D. L. Mellman, K. Ling, Y. Sun, M. P. Wagoner, N. J. Schill and R. A. Anderson: A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol, 42(1), 15-39 (2007)
DOI: 10.1080/10409230601162752

41. Y. S. Mao and H. L. Yin: Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch, 455(1), 5-18 (2007)
DOI: 10.1007/s00424-007-0286-3

42. R. Jain, J. Santi-Rocca, N. Padhan, S. Bhattacharya, N. Guillen and A. Bhattacharya: Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell Microbiol, 10(6), 1373-89 (2008)
DOI: 10.1111/j.1462-5822.2008.01134.x

43. M. Babuta, M. S. Mansuri, S. Bhattacharya and A. Bhattacharya: The Entamoeba histolytica, Arp2/3 Complex Is Recruited to Phagocytic Cups through an Atypical Kinase EhAK1. PLoS Pathog, 11(12), e1005310 (2015)
DOI: 10.1371/journal.ppat.1005310

44. S. Kumar, N. Padhan, N. Alam and S. Gourinath: Crystal structure of calcium binding protein-1 from Entamoeba histolytica: a novel arrangement of EF hand motifs. Proteins, 68(4), 990-8 (2007)
DOI: 10.1002/prot.21455

45. L. R. Pearce, D. Komander and D. R. Alessi: The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol, 11(1), 9-22 (2010)
DOI: 10.1038/nrm2822

46. J. Middelbeek, K. Clark, H. Venselaar, M. A. Huynen and F. N. van Leeuwen: The alpha-kinase family: an exceptional branch on the protein kinase tree. Cell Mol Life Sci, 67(6), 875-90 (2010)
DOI: 10.1007/s00018-009-0215-z

47. D. Drennan and A. G. Ryazanov: Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Prog Biophys Mol Biol, 85(1), 1-32 (2004)
DOI: 10.1016/S0079-6107(03)00060-9

48. C. Hauge, T. L. Antal, D. Hirschberg, U. Doehn, K. Thorup, L. Idrissova, K. Hansen, O. N. Jensen, T. J. Jorgensen, R. M. Biondi and M. Frodin: Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J, 26(9), 2251-61 (2007)
DOI: 10.1038/sj.emboj.7601682

49. Y. A. Lee, K. A. Kim, A. Min and M. H. Shin: Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica. Korean J Parasitol, 52(4), 355-65 (2014)
DOI: 10.3347/kjp.2014.52.4.355

50. A. Santiago, M. E. Carbajal, G. Benitez-King and I. Meza: Entamoeba histolytica: PKC transduction pathway activation in the trophozoite-fibronectin interaction. Exp Parasitol, 79(3), 436-44 (1994)
DOI: 10.1006/expr.1994.1105

51. T. J. Mitchison and L. P. Cramer: Actin-based cell motility and cell locomotion. Cell, 84(3), 371-9 (1996)
DOI: 10.1016/S0092-8674(00)81281-7

52. E. Labruyere, C. Zimmer, V. Galy, J. C. Olivo-Marin and N. Guillen: EhPAK, a member of the p21-activated kinase family, is involved in the control of Entamoeba histolytica migration and phagocytosis. J Cell Sci, 116(Pt 1), 61-71 (2003)
DOI: 10.1242/jcs.00190

53. C. D. Nobes and A. Hall: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol, 144(6), 1235-44 (1999)
DOI: 10.1083/jcb.144.6.1235

54. P. D. Burbelo, D. Drechsel and A. Hall: A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem, 270(49), 29071-4 (1995)
DOI: 10.1074/jbc.270.49.29071

55. M. L. Galisteo, J. Chernoff, Y. C. Su, E. Y. Skolnik and J. Schlessinger: The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J Biol Chem, 271(35), 20997-1000 (1996)
DOI: 10.1074/jbc.271.35.20997

56. E. Manser, T. Leung, H. Salihuddin, Z. S. Zhao and L. Lim: A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458), 40-6 (1994)
DOI: 10.1038/367040a0

57. L. E. Arias-Romero, M. de Jesus Almaraz-Barrera, J. D. Diaz-Valencia, A. Rojo-Dominguez, R. Hernandez-Rivas and M. Vargas: EhPAK2, a novel p21-activated kinase, is required for collagen invasion and capping in Entamoeba histolytica. Mol Biochem Parasitol, 149(1), 17-26 (2006)
DOI: 10.1016/j.molbiopara.2006.04.001

58. S. Dutta, A. Sardar, D. Ray and S. Raha: Molecular and functional characterization of EhPAK3, a p21 activated kinase from Entamoeba histolytica. Gene, 402(1-2), 57-67 (2007)
DOI: 10.1016/j.gene.2007.07.022

59. L. Bardwell: Mechanisms of MAPK signalling specificity. Biochem Soc Trans, 34(Pt 5), 837-41 (2006)
DOI: 10.1042/BST0340837

60. M. R. Junttila, S. P. Li and J. Westermarck: Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J, 22(4), 954-65 (2008)
DOI: 10.1096/fj.06-7859rev

61. A. S. Ghosh, S. Dutta and S. Raha: Hydrogen peroxide-induced apoptosis-like cell death in Entamoeba histolytica. Parasitol Int, 59(2), 166-72 (2010)
DOI: 10.1016/j.parint.2010.01.001

62. P. D. Jeffrey, A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massague and N. P. Pavletich: Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 376(6538), 313-20 (1995)
DOI: 10.1038/376313a0

63. C. Y. Logan and R. Nusse: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20, 781-810 (2004)
DOI: 10.1146/annurev.cellbio.20.010403.113126

64. D. A. Canton and D. W. Litchfield: The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal, 18(3), 267-75 (2006)
DOI: 10.1016/j.cellsig.2005.07.008

65. R. Jain, S. Kumar, S. Gourinath, S. Bhattacharya and A. Bhattacharya: N- and C-terminal domains of the calcium binding protein EhCaBP1 of the parasite Entamoeba histolytica display distinct functions. PLoS One, 4(4), e5269 (2009)
DOI: 10.1371/journal.pone.0005269

66. Y. P. Ho, C. W. Kuo, Y. T. Hsu, Y. S. Huang, L. P. Yew, W. F. Huang, K. C. Lin and J. H. Hsu: beta-Actin is a downstream effector of the PI3K/AKT signaling pathway in myeloma cells. Mol Cell Biochem, 348(1-2), 129-39 (2011)
DOI: 10.1007/s11010-010-0647-7

67. R. Arguello-Garcia, M. Cruz-Soto, L. Romero-Montoya and G. Ortega-Pierres: In vitro resistance to 5-nitroimidazoles and benzimidazoles in Giardia duodenalis: variability and variation in gene expression. Infect Genet Evol, 9(6), 1057-64 (2009)
DOI: 10.1016/j.meegid.2009.05.015

68. S. Kumar, S. Aslam, M. Mazumder, P. Dahiya, A. Murmu, B. A. Manjasetty, R. Zaidi, A. Bhattacharya and S. Gourinath: Crystal structure of calcium binding protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes. PLoS Pathog, 10(12), e1004532 (2014)
DOI: 10.1371/journal.ppat.1004532

69. N. Kumar, Somlata, M. Mazumder, P. Dutta, S. Maiti and S. Gourinath: EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica. PLoS Pathog, 10(9), e1004362 (2014)
DOI: 10.1371/journal.ppat.1004362

Abbreviations: TMK(Trans-Membrane kinase), GalNAc (N-Acetylgalactosamine), PTK (Protein Tyrosine Kinase), PI (phosphoinositide), PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate), PtdIns(3,4,5)P3 (Phosphatidylinositol (3,4,5)-trisphosphate), CAMK (Calmodulin dependent kinase), AK (Alpha Kinase), PAK (p21 Activated Kinase)

Key Words: Protozoan Parasite, Entamoeba histolytica, Kinases, Pathogenesis, Virulence and signalling, Review

Send correspondence to: Samudrala Gourinath, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India, Tel: 91 011-26704513, Fax: 91 011 2674 2516, E-mail: sgourinath@mail.jnu.ac.in