[Frontiers in Bioscience, Landmark, 25, 1305-1323, March 1, 2020]

Sexually dimorphic dynamics of thyroid axis activity during fasting in rats

Patricia Joseph-Bravo1, Iván Lazcano2, Lorraine Jaimes-Hoy1, Mariana Gutierrez-Mariscal1, Edith Sanchez-Jaramillo3, Rosa María Uribe1, Jean-Louis Charli1

1Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National University of Mexico (UNAM), Cuernavaca, Mexico, 2Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, National University of Mexico (UNAM), Queretaro, Mexico, 3Laboratory of Molecular Neuroendocrinology, Division of Neuroscience Research, National Institute of Psychiatry, Mexico City, Mexico


1. Abstract
2. Introduction
3. Material and methods
    3.1. Experimental animals
    3.2. Experimental design
    3.3. Determination of mRNA levels
    3.4. Measurements of TRH-degrading ectoenzyme and thyroliberinase activities
    3.5. Determination of TRH content in the median eminence
    3.6. Measurements of hormone concentrations in serum
    3.7. Statistical analysis
4. Results
    4.1. Effects of 24 or 48 h starvation in adult male or female rats
    4.2. Effects of 36-72 h starvation in adult female rats
5. Discussion
6. Acknowledgments
7. References


Starvation induces tertiary hypothyroidism in adult rodents. Response of the hypothalamus-pituitary-thyroid (HPT) axis to starvation is stronger in adult males than in females. To improve the description of this sexual dimorphism, we analyzed the dynamics of HPT axis response to fasting at multiple levels. In adult rats of the same cohort, 24 and 48 h of starvation inhibited paraventricular nucleus Trh expression and serum concentrations of TSH and T4 earlier in males than in females, with lower intensity in females than in males. In adult females fasted for 36-72 h, serum TSH concentration decreased after 36 h, when the activity of thyrotropin-releasing hormone (TRH)-degrading ectoenzyme was increased in the median eminence. The kinetics of these events were distinct from those previously observed in male rats. We suggest that the sex difference in TSH secretion kinetics is driven not only at the level of paraventricular nucleus TRH neurons, but also by differences in post-secretory catabolism of TRH, with enhancement of TRH-degrading activity more sustained in male than female animals.


1. F Mauvais-Jarvis. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ 6, 1-9 (2015)
DOI: 10.1186/s13293-015-0033-y

2. R Mullur; Y-Y Liu; G a Brent. Thyroid hormone regulation of metabolism. Physiol Rev 94, 355-382 (2014)
DOI: 10.1152/physrev.00030.2013

3. C Fekete; RM Lechan. Central regulation of hypothalamic- pituitary-thyroid under physiological and pathophysiological Conditions. Endocr Rev 35, 159-194 (2014)
DOI: 10.1210/er.2013-1087

4. P Joseph-Bravo; L Jaimes-Hoy; RM Uribe; JL Charli. TRH, the first hypophysiotropic releasing hormone isolated: Control of the pituitary-thyroid axis. J Endocrinol 226, T85-T100 (2015)
DOI: 10.1530/JOE-15-0124

5. B Gereben; EA McAninch; MO Ribeiro; AC Bianco. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 11, 642-652 (2015)
DOI: 10.1038/nrendo.2015.155

6. E Sánchez; MA Vargas; PS Singru; I Pascual; F Romero; C Fekete; JL Charli; RM Lechan. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology 150, 2283-2291 (2009)
DOI: 10.1210/en.2008-1643

7. A Rodríguez-Rodríguez; I Lazcano; E Sánchez-Jaramillo; RM Uribe; L Jaimes-Hoy; P Joseph-Bravo; JL Charli. Tanycytes and the control of thyrotropin-releasing hormone flux into portal capillaries. Front Endocrinol 10, 401 (2019)
DOI: 10.3389/fendo.2019.00401

8. S Schmitmeier; H Thole; A Bader; K Bauer. Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. Eur J Biochem 269, 1278-1286 (2002)
DOI: 10.1046/j.1432-1033.2002.02768.x

9. K Bauer. Regulation of degradation of thyrotropin releasing hormone by thyroid hormones. Nature 259, 591-593 (1976)
DOI: 10.1038/259591a0

10. P Joseph-Bravo; L Jaimes-Hoy; J-L Charli. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 224, R139-R159 (2015)
DOI: 10.1530/JOE-14-0593

11. A Boelen; W Wiersinga; E Fliers. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18, 123-129 (2008)
DOI: 10.1089/thy.2007.0253

12. EM de Vries; HC van Beeren; MT Ackermans; A Kalsbeek; E Fliers; A Boelen. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats. J Endocrinol 224, 25-35 (2015)
DOI: 10.1530/JOE-14-0533

13. S Diano; F Naftolin; F Goglia; TL Horvath. Fasting-induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 139, 2879-2884 (1998)
DOI: 10.1210/en.139.6.2879

14. I Lazcano; A Cabral; RM Uribe; L Jaimes-Hoy; M Perello; P Joseph-Bravo; E Sánchez-Jaramillo; JL Charli. Fasting enhances pyroglutamyl peptidase II activity in tanycytes of the mediobasal hypothalamus of male adult rats. Endocrinology 156, 2713-2723 (2015)
DOI: 10.1210/en.2014-1885

15. GAC Van Haasteren; E Linkels; W Klootwijk; H Van Toor; JMM Rondeel; APN Themmen; FH De Jong; K Valentijn; H Vaudry; K Bauer; TJ Visser; WJ De Greef. Starvation-induced changes in the hypothalamic content of prothyrotrophin-releasing hormone (proTRH) mRNA and the hypothalamic release of proTRH-derived peptides: Role of the adrenal gland. J Endocrinol 145, 143-153 (1995)
DOI: 10.1677/joe.0.1450143

16. N Blake; M Johnson; D Eckland; O Foster; S Lightman. Effect of food deprivation and altered thyroid status on the hypothalamic-pituitary-thyroid axis in the rat. J Endocrinol 133, 183-188 (1992)
DOI: 10.1677/joe.0.1330183

17. JM Rondeel; R Heide; WJ de Greef; H van Toor; GA van Haasteren; W Klootwijk; TJ Visser. Effect of starvation and subsequent refeeding on thyroid function and release of hypothalamic thyrotropin-releasing hormone. Neuroendocrinology 56, 348-353 (1992)
DOI: 10.1159/000126248

18. JH Cohen; S Alex; WJ DeVito; LE Braverman; CH Emerson. Fasting-associated changes in serum thyrotropin in the rat are influenced by gender. Endocrinology 124, 3025-3029 (1989)
DOI: 10.1210/endo-124-6-3025

19. L Jaimes-Hoy; M Gutiérrez-Mariscal; Y Vargas; A Pérez-Maldonado; F Romero; E Sánchez-Jaramillo; J-L Charli; P Joseph-Bravo. Neonatal maternal separation alters, in a sex specific manner, the expression of TRH, of TRH-degrading ectoenzyme in the rat hypothalamus, and the response of the thyroid axis to starvation. Endocrinology 157, 3253-3265 (2016)
DOI: 10.1210/en.2016-1239

20. AR Burke; CM McCormick; SM Pellis; JL Lukkes. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neurosci Biobehav Rev 76, 280-300 (2017)
DOI: 10.1016/j.neubiorev.2017.01.018

21. CM McCormick; MR Green. From the stressed adolescent to the anxious and depressed adult: Investigations in rodent models. Neuroscience 249, 242-257 (2013)
DOI: 10.1016/j.neuroscience.2012.08.063

22. TL Bale; CN Epperson. Sex differences and stress across the lifespan. Nat Neurosci 18, 1413-1420 (2015)
DOI: 10.1038/nn.4112

23. G Paxinos; C Watson. The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press, Burlington, MA (2005)

24. P Chomczynski; N Sacchi. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1, 581-585 (2006)
DOI: 10.1038/nprot.2006.83

25. A Aguilar-Valles; E Sánchez; P De Gortari; I Balderas; V Ramírez-Amaya; F Bermúdez-Rattoni; P Joseph-Bravo. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology 82, 306-19 (2005)
DOI: 10.1159/000093129

26. A Aguilar-Valles; E Sánchez; P de Gortari; AI García-Vazquez; V Ramírez-Amaya; F Bermúdez-Rattoni; P Joseph-Bravo. The expression of TRH, its receptors and degrading enzyme is differentially modulated in the rat limbic system during training in the Morris water maze. Neurochem Int 50, 404-417 (2007)
DOI: 10.1016/j.neuint.2006.09.009

27. RM Uribe; L Jaimes-Hoy; C Ramírez-Martínez; A García-Vázquez; F Romero; M Cisneros; A Cote-Vélez; JL Charli; P Joseph-Bravo. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology 155, 2020-2030 (2014)
DOI: 10.1210/en.2013-1724

28. P de Gortari; K Mancera; A Cote-Vélez; MI Amaya; A Martínez; L Jaimes-Hoy; P Joseph-Bravo. Involvement of CRH-R2 receptor in eating behavior and in the response of the HPT axis in rats subjected to dehydration-induced anorexia. Psychoneuroendocrinology 34, 259-72 (2009)
DOI: 10.1016/j.psyneuen.2008.09.010

29. M Mendez; P Joseph-Bravo; M Cisneros; MA Vargas; J-L Charli. Regional distribution of in vitro release of thyrotropin releasing hormone in rat brain. Peptides 8, 291-298 (1987)
DOI: 10.1016/0196-9781(87)90104-5

30. AC Bianco; G Anderson; D Forrest; VA Galton; B Gereben; BW Kim; PA Kopp; XH Liao; MJ Obregon; RP Peeters; S Refetoff; DS Sharlin; WS Simonides; RE Weiss; GR Williams. American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 24, 88-168 (2014)
DOI: 10.1089/thy.2013.0109

31. J-M Fan; X-Q Chen; X Wang; K Hao; J-Z Du. Corticotropin-releasing factor receptor type 1 colocalizes with type 2 in corticotropin-releasing factor-containing cellular profiles in rat brain. Neuro Endocrinol Lett 35, 417-26 (2014)

32. H Arima; G Aguilera. Vasopressin and oxytocin neurones of hypothalamic supraoptic and paraventricular nuclei co-express mRNA for type-1 and type-2 corticotropin-releasing hormone receptors. J Neuroendocrinol 12, 833-842 (2001)
DOI: 10.1046/j.1365-2826.2000.00528.x

33. S Makino; K Hashimoto; PW Gold. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav 73, 147-58 (2002)
DOI: 10.1016/S0091-3057(02)00791-8

34. MJ Cullen; N Ling; AC Foster; MA Pelleymounter. Urocortin, corticotropin releasing factor-2 receptors and energy balance. Endocrinology 142, 992-9 (2001)
DOI: 10.1210/endo.142.3.7989

35. A Stengel; Y Taché. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front Neurosci 8, 52 (2014)
DOI: 10.3389/fnins.2014.00052

36. R Toni; IMD Jackson; RM Lechan. Thyrotropin-releasing-hormone-immunoreactive innervation of thyrotropin-releasing-hormone-tuberoinfundibular neurons in rat hypothalamus: Anatomical basis to suggest ultrashort feedback regulation. Neuroendocrinology 52, 422-428 (1990)
DOI: 10.1159/000125623

37. J Kiss; B Halász. Ultrastructural analysis of the innervation of TRH-immunoreactive neuronal elements located in the periventricular subdivision of the paraventricular nucleus of the rat hypothalamus. Brain Res 532, 107-114 (1990)
DOI: 10.1016/0006-8993(90)91749-7

38. N Liao; H Vaudry; G Pelletier. Neuroanatomical connections between corticotropin-releasing factor (CRF) and somatostatin (SRIF) nerve endings and thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of rat hypothalamus. Peptides 13, 677-80 (1992)
DOI: 10.1016/0196-9781(92)90172-Y

39. B Baranowska; M Chmielowska; E Wolinska-Witort; K Roguski; E Wasilewska-Dziubinska. The relationship between neuropeptides and hormones in starvation. Neuro Endocrinol Lett 22, 349-55 (2001)

40. A Valle; Català-Niell A; Colom B; García-Palmer FJ; Oliver J; Roca P. Sex-related differences in energy balance in response to caloric restriction. Am J Physiol Endocrinol Metab 289, E15-22 (2005)
DOI: 10.1152/ajpendo.00553.2004

41. F Mauvais-Jarvis; DJ Clegg; AL Hevener. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34, 309-338 (2013)
DOI: 10.1210/er.2012-1055

42. V Viau; B Bingham; J Davis; P Lee; M Wong. Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 146, 137-146 (2005)
DOI: 10.1210/en.2004-0846

43. Y Cherel; JP Robin; A Heitz; C Calgari; Y Le Maho. Relationships between lipid availability and protein utilization during prolonged fasting. J Comp Physiol B 162, 305-13 (1992)
DOI: 10.1007/BF00260757

44. M Sandri. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45, 2121-9 (2013)
DOI: 10.1016/j.biocel.2013.04.023

45. CV Dayas; Y Xu; KM Buller; TA Day. Effects of chronic oestrogen replacement on stress-induced activation of hypothalamic-pituitary-adrenal axis control pathways. J Neuroendocrinol 12, 784-794 (2000)
DOI: 10.1046/j.1365-2826.2000.00527.x

46. V Viau. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol 14, 506-513 (2002)
DOI: 10.1046/j.1365-2826.2002.00798.x

47. LS Brady; MA Smith; PW Gold; M Herkenham. Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52, 441-447 (1990)
DOI: 10.1159/000125626

48. S Makino; T Kaneda; M Nishiyama; K Asaba; Hashimoto K. Lack of decrease in hypothalamic and hippocampal glucocorticoid receptor mRNA during starvation. Neuroendocrinology 783, 120-128 (2001)
DOI: 10.1159/000054677

49. T Isse; Y Ueta; R Serino; J Noguchi; Y Yamamoto; M Nomura; I Shibuya; SL Lightman; H Yamashita. Effects of leptin on fasting-induced inhibition of neuronal nitric oxide synthase mRNA in the paraventricular and supraoptic nuclei of rats. Brain Res 846, 229-35 (1999)
DOI: 10.1016/S0006-8993(99)02065-X

50. H Maruyama; S Makino; T Noguchi; T Nishioka; K Hashimoto. Central type 2 corticotropin-releasing hormone receptor mediates hypothalamic-pituitary-adrenocortical axis activation in the rat. Neuroendocrinology 86, 1-16 (2007)
DOI: 10.1159/000103556

51. CJ Woodward; GR Hervey; RE Oakey; EM Whitaker. The effects of fasting on plasma corticosterone kinetics in rats. Br J Nutr 66, 117-27 (1991)
DOI: 10.1079/BJN19910015

52. Z Zhang; A Boelen; A Kalsbeek; E Fliers. TRH neurons and thyroid hormone coordinate the hypothalamic response to cold. Eur Thyroid J 7, 279-288 (2018)
DOI: 10.1159/000493976

53. DA Gayle; M Desai; E Casillas; R Beloosesky; MG Ross. Gender-specific orexigenic and anorexigenic mechanisms in rats. Life Sci 79, 1531-1536 (2006)
DOI: 10.1016/j.lfs.2006.04.015

54. K Nohara; Y Zhang; RS Waraich; A Laque; JP Tiano; J Tong; H Münzberg; F Mauvais-Jarvis. Early-life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology 152, 1661-1669 (2011)
DOI: 10.1210/en.2010-1288

55. M Duclos; E Timofeeva; C Michel; D Richard. Corticosterone-dependent metabolic and neuroendocrine abnormalities in obese Zucker rats in relation to feeding. Am J Physiol Metab 288, E254-E266 (2005)
DOI: 10.1152/ajpendo.00087.2004

56. S Hisano; Y Fukui; M Chikamoriaoyama; T Aizawa; T Shibasaki. Reciprocal synaptic relations between CRF-immunoreactive and TRH-immunoreactive neurons in the paraventricular nucleus of the rat hypothalamus. Brain Res 620, 343-346 (1993)
DOI: 10.1016/0006-8993(93)90178-P

57. Z Zhang; F Machado; L Zhao; CA Heinen; E Foppen; MT Ackermans; J Zhou; PN Bisschop; A Boelen; E Fliers; A Kalsbeek. Administration of thyrotropin-releasing hormone (TRH) in the hypothalamic paraventricular nucleus (PVN) of male rats mimics the metabolic cold defence response. Neuroendocrinology 107, 267-279 (2018)
DOI: 10.1159/000492785

58. PM Hinkle; AU Gehret; BW Jones. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 6, 180 (2012)
DOI: 10.3389/fnins.2012.00180

59. L Jaimes-Hoy; P Joseph-Bravo; P de Gortari. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav 53, 366-377 (2008)
DOI: 10.1016/j.yhbeh.2007.11.003

60. A Coppola; R Meli; S Diano. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology 146, 2827-2833 (2005)
DOI: 10.1210/en.2004-1361

61. A Marsili; E Sanchez; P Singru; JW Harney; AM Zavacki; RM Lechan; PR Larsen. Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. J Endocrinol 211, 73-78 (2011)
DOI: 10.1530/JOE-11-0248

62. R Cruz; MA Vargas; RM Uribe; I Pascual; I Lazcano; A Yiotakis; M Matziari; P Joseph-Bravo; JL Charli. Anterior pituitary pyroglutamyl peptidase II activity controls TRH-induced prolactin release. Peptides 29, 1953-1964 (2008)
DOI: 10.1016/j.peptides.2008.07.011

63. GAC van Haasteren; H van Toor; W Klootwijk; B Handler; E Linkels; P van der Schoot; J van Ophemert; FH de Jong; TJ Visser; WJ de Greef. Studies on the role of TRH and corticosterone in the regulation of prolactin and thyrotrophin secretion during lactation. J Endocrinol 148, 325-336 (1996)
DOI: 10.1677/joe.0.1480325

64. J Köhrle. Thyroid hormones and derivatives: endogenous thyroid hormones and their targets. Methods Mol Biol 1801, 85-104 (2018)
DOI: 10.1007/978-1-4939-7902-8_9

65. AH van der Spek; E Fliers; A Boelen. The classic pathways of thyroid hormone metabolism. Mol Cell Endocrinol 458, 29-38 (2017)
DOI: 10.1016/j.mce.2017.01.025

Abbreviations: HPT: hypothalamus-pituitary-thyroid, HPA: hypothalamus-pituitary-adrenal, TRH, Trh: thyrotropin-releasing hormone, TSH: thyrotropin, Tshb: thyrotropin β, TRH-DE, Trhde: thyrotropin-releasing hormone-degrading ectoenzyme, T4: thyroxine, T3: 3,3',5-triiodo-L-thyronine, Dio: deiodinase, PVN: paraventricular nucleus, TRH-R1, Trhr: thyrotropin-releasing hormone receptor 1, CRH, Crh: corticotropin releasing hormone, CRH-R1, Crhr1: corticotropin releasing hormone receptor 1, CRH-R2, Crhr2: corticotropin releasing hormone receptor 2, Nr3c1: glucocorticoid receptor, Ppia: cyclophilin A, RIA: radioimmunoassay, POMC: pro-opiomelanocortin, ARC: arcuate nucleus.

Key Words: Thyroid, Sex, Fasting, Stress, Thyrotropin, Thyrotropin-releasing hormone, Thyrotropin-releasing hormone-degrading ectoenzyme

Send correspondence to: Jean-Louis Charli, Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National University of Mexico (UNAM), Cuernavaca, Mor. 62271, México. Tel: 52-5556227633, Fax: 52-5556227620, E-mail: charli@ibt.unam.mx