[Frontiers in Bioscience, Landmark, 25, 1120-1131, March 1, 2020]

miR-4698-Trim59 axis plays a suppressive role in hepatocellular carcinoma

Dandan Yu1, liqing Zhu1, Hongxiang Tu1, Lingjian Wu2 Huimin Yang3, Chunquan Xu1

1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R.China, 2 Department of Dermatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R.China, 3Department of Blood Bank, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R.China

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and Methods
    3.1. Human tissues
    3.2. Cell Culture
    3.3. Western blotting
    3.4. RNA extraction, cDNA synthesis and real Time qPCR
    3.5. Transfection
    3.6. Cell growth assay
    3.7. Migration and invasion assays
    3.8. Luciferase reporter assay
    3.9. Statistical analysis
4. Results
    4.1. The expression of mir-4698 is downregulated in HCC tissues and HCC cell lines
    4.2. miR-4698 suppresses cell growth, motility and EMT of HCC cells
    4.3. Inhibition of basal levels of miR-4698 enhances growth, migration and invasion of HCC cells
    4.4. Trim59 is a target of miR-4698
    4.5. Inhibitory effects of miR-4698 is mediated by targeting Trim59 in HCC cells
5. Discussion
6. Acknowledgments
7. References

1. ABSTRACT

microRNAs (miRNAs) are important in tumor suppression and oncogenesis. In this study, we aimed to explore the role of miR-4698 with its potential target, Tripartite motif-containing 59 (Trim59), a protein with oncogenic function, in hepatocellular carcinoma (HCC). The expression of miR-4698 was significantly lower in HCC tissues and HCC cell lines as compared to the levels expressed in normal tissues adjacent to tumors and in normal hepatic cell line. Overexpression of miR-4698 in HCC cells by transfection of its mimic significantly inhibited cell growth, migration, invasion and epithelial-mesenchymal transition (EMT), whereas, its antisense oligonucleotides (ASOs) exerted an opposite effect. Trim59 was identified as a target of miR-4698 in miRDB and consistent with this, the expression of Trim59 was inversely correlated with miR-4698 in HCC, and miR-4698 overexpression led to a significant decrease in luciferase activity of pRL-Trim59-3’-UTR, but not mutant pRL-Trim59-3’-UTR. Moreover, miR-4698 mimic inhibited the expression of Trim59. Overexpression of Trim59 abrogated the inhibitory effects of miR-4698. In conclusion, these data show that miR-4698-Trim59 axis plays a tumor suppressive role in HCC.

7. REFERENCES

1. McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis 15, 223-243 (2011)
DOI: 10.1016/j.cld.2011.03.006
PMid:21689610 PMCid:PMC4141529

2. Jafri MA, Zaidi SK, Ansari SA, Al-Qahtani MH and Shay JW. MicroRNAs as potential drug targets for therapeutic intervention in colorectal cancer. Expert Opin Ther Targets 19(12), 1705-1723 (2015)
DOI: 10.1517/14728222.2015.1069816
PMid:26189482

3. Bartel,DP. MicroRNAs: genomics, biogenesis, mechanism,and function. Cell 116, 281-297 (2004)
DOI: 10.1016/S0092-8674(04)00045-5

4. Filipowicz W, Bhattacharyya SN and Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight. Nat Rev Genet 9, 102-114 (2008)
DOI: 10.1038/nrg2290
PMid:18197166

5. Djuranovic S, Nahvi,A and Green,R. A parsimonious model for gene regulation by miRNAs. Science 331, 550-553 (2011)
DOI: 10.1126/science.1191138
PMid:21292970 PMCid:PMC3955125

6. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8, 23-36 (2007)
DOI: 10.1038/nrm2085
PMid:17183358

7. Lund E and Dahlberg JE. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp. Quant Biol 71, 59 - 66 (2006)
DOI: 10.1101/sqb.2006.71.050
PMid:17381281

8. Gregory RI, Chendrimada TP, Cooch,N and Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631- 640 (2005)
DOI: 10.1016/j.cell.2005.10.022
PMid:16271387

9. Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF and Rossi JJ. Nucleic Acid Res 40(5), 2181-2196 (2012)
DOI: 10.1093/nar/gkr961
PMid:22080513 PMCid:PMC3300021

10. Zampetaki A and Mayr M. MicroRNAs in vascular and metabolic disease. Circ Res 110, 508-522 (2012)
DOI: 10.1161/CIRCRESAHA.111.247445
PMid:22302757

11. Iorio MV and Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. EMBO Mol Med 4, 143-159 (2012)
DOI: 10.1002/emmm.201100209
PMid:22351564 PMCid:PMC3376845

12. Martignani E, Miretti S, Accornero P and Baratta M. miRNAs highlights in stem and cancer cells. Mini Rev Med Chem 11, 1165-1182 (2011)
DOI: 10.2174/138955711797655371
PMid:22353225

13. Wilfred BR, Wang WX and Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 91, 209-217 (2007)
DOI: 10.1016/j.ymgme.2007.03.011
PMid:17521938 PMCid:PMC1978064

14. Li J, Chen Y, Qin X, Wen J, Ding H, Xia W, Li S, Su X, Wang W, Li H, Zhao Q, Fang T, Qu L and Shao N. MiR-138 downregulates miRNA processing in Hela cells by targeting RMND5A and decreasing Exportin-5 stability. Nucleic Acid Res 42(1), 458-474 (2014)
DOI: 10.1093/nar/gkt839
PMid:24057215 PMCid:PMC3874158

15. Ha TY. MicroRNAs in human diseases: from lung, liver and kidney diseases to infectious disease, sickle cell disease and Endometrium disease. Immune Netw 11, 309-323 (2011)
DOI: 10.4110/in.2011.11.6.309
PMid:22346770 PMCid:PMC3275699

16. Yan S, Cao Y, Mao A. MicroRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Front Biosci (Landmark Ed) 20, 1092-1103 (2015)
DOI: 10.2741/4361
PMid:25961547

17. Bonfrate L, Altomare DF, Di Lena M, Travaglio E, Rotelli MT, De Luca A and Portincasa P. MicroRNA in colorectal cancer: new perspectives for diagnosis, prognosis and treatment. J Gastrointestin Liver Dis 22(3), 311-320 (2013)

18. Raisch J, Darfeuille-Michaud A, Nguyen HT. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol 19 (20), 2985-2996 (2013)
DOI: 10.3748/wjg.v19.i20.2985
PMid:23716978 PMCid:PMC3662938

19. Mohamed AA, Ali-Eldin ZA, Elbedewy TA, El-Serafy M, Ali-Eldin FA and AbdelAziz H. MicroRNAs and clinical implications in hepatocellular carcinoma. World J Hepatol 9(23), 1001-1007 (2017)
DOI: 10.4254/wjh.v9.i23.1001
PMid:28878865 PMCid:PMC5569275

20. Thurnherr T, Mah WC, Lei Z, Jin Y, Rozen SG and Lee CG. Differentially expressed miRNAs in hepatocellular carcinoma target genes in the genetic formation processing and metabolism pathways. Sci Rep 6, 20065 (2016)
DOI: 10.1038/srep20065
PMid:26817861 PMCid:PMC4730185

21. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer 11, 792-804 (2011)
DOI: 10.1038/nrc3139
PMid:21979307

22. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, , Melchers D, Houtman R, Cato ACB, Tschopp P, Gu L, Corsinotti A, Zhong Q, Fankhauser C, Fritz C, Poyet C, Wagner U, Guo T, Aebersold R, Garraway LA, Wild PJ, Theurillat JP and Brown M. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell 29, 846-858 (2016)
DOI: 10.1016/j.ccell.2016.04.012
PMid:27238081 PMCid:PMC5124371

23. Guo P, Ma X, Zhao W, Huai W, Li T, Qiu Y, Zhang Y and Han L. TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1-TSC2 complex. Oncogene 37(4), 478-488 (2018)
DOI: 10.1038/onc.2017.349
PMid:28967907

24. Huang XQ, Zhang XF, Xia JH, Chao J, Pan QZ, Zhao JJ, Zhou ZQ, Chen CL, Tang Y, Weng DS, Zhang JH and Xia JC. Tripartite motif containing 3 (TRIM3) inhibits tumor growth and metastasis of liver cancer. Chin J Cancer 36(1), 77 (2017)
DOI: 10.1186/s40880-017-0240-5
PMid:28950898 PMCid:PMC5615435

25. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S, Tsai CY, Shi X, Schwarzer D, Plunkett W, Aronow B, Gozani O, Fischle W, Hung MC, Patel DJ and Barton MC. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927-932 (2010)
DOI: 10.1038/nature09542
PMid:21164480 PMCid:PMC3058826

26. Valiyeva F, Jiang F, Elmaadawi A, Moussa M, Yee SP, Raptis L, Izawa JI, Yang BB, Greenberg NM, Wang F and Xuan JW. Characterization of the oncogenic activity of the novel TRIM59 gene in mouse cancer models. Mol Cancer Ther 10, 1229-1240 (2011)
DOI: 10.1158/1535-7163.MCT-11-0077
PMid:21593385

27. Zhan W, Han T, Zhang C, Xie C, Gan M, Deng K, Fu M and Wang JB.TRIM59 Promotes the Proliferation and Migration of Non-Small Cell Lung Cancer Cells by Upregulating Cell Cycle Related Proteins. PloS one 10, e0142596 (2015)
DOI: 10.1371/journal.pone.0142596
PMid:26599082 PMCid:PMC4658198

28. Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH and Gao WQ. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology 147, 1043-1054 (2014)
DOI: 10.1053/j.gastro.2014.07.021
PMid:25046164

29. Sun G, Sui X, Han D, Gao J, Liu Y and Zhou L. TRIM59 promotes cell proliferation, migration and invasion in human hepatocellular carcinoma cells. Pharmazie 72(11), 674-679 (2017)

30. Sefried S, Häring HU, Weigert C and Eckstein SS, . Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biol 8(10), pii: 180147 (2018)
DOI: 10.1098/rsob.180147
PMid:30355754 PMCid:PMC6223207

31. Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011)
DOI: 10.1016/j.cell.2011.02.013
PMid:21376230

32. Lee SK and Calin GA. Non-coding RNAs and cancer: new paradigms in oncology. Discov Med 11, 245-254 (2011)

33. Negrini M, Nicoloso MS and Calin GA. MicroRNAs and cancer-new paradigms in molecular oncology. Curr Opin Cell Biol 21, 470-479 (2009)
DOI: 10.1016/j.ceb.2009.03.002
PMid:19411171

34. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 12, 395-412 (2018)
DOI: 10.1146/annurev-pathol-020117-043854
PMid:29414248

35. Yang SF and Liu GH. Targeting the Ras/Raf/Mek/ERK pathway in hepatocellular carcinoma. Onco Lett 13(3), 1041-147 (2017)
DOI: 10.3892/ol.2017.5557
PMid:28454211 PMCid:PMC5403244

Abbreviations: miRNAs: microRNAs; HCC: hepatocellular carcinoma; Trim59: Tripartite motif-containing 59; ASOs: antisense oligonucleotides; 3’-UTR: 3’ untranslated region; EMT: epithelial mesenchymal transition; FBS: fetal bovine serum; HRP: horseradish peroxidase; DMEM: Dulbecco's modified Eagle's medium; OD: optical density

Key Words: miR-4698, HCC, Trim59, Cell growth, Motility

Send correspondence to: Chunquan Xu, Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang 325000 P.R.China, Tel: 86-13857793026, Fax: 86-577-55578033, E-mail: chunquanxu19@gmail.com