[Frontiers in Bioscience, Landmark, 25, 1386-1411, March 1, 2020]

Protein kinases as regulators of osmolyte accumulation under stress conditions: An overview

Usma Manzoor1, Tanveer A. Dar1

1Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006


1. Abstract
2. Introduction
3. Osmolyte accumulation - an adaptive response against stress
4. Regulation of osmolyte accumulation
    4.1. At transcriptional level- expression of osmolyte transporter
    4.2. At translational level - Role of protein kinases
      4.2.1. Taurine transporter
      4.2.2. Myoinositol transporter
      4.2.3. Betaine transporter
5. Protein kinases as therapeutic targets
6. Regulation of protein kinases by osmolytes under in vitro conditions
7. Conclusion
8. Future perspectives
9. Acknowledgments
10. References


Accumulation of osmolytes, during cell volume perturbations, as cell volume regulators is ensured through their de novo synthesis, decreased degradation and transport from their site of synthesis to the site of utility through various transport systems. Among these, transport system mediated accumulation has been observed to be quite significant during long term cell volume perturbation. Under stress conditions, these osmolyte transporters are regulated at transcriptional as well as translational level. At translational level, protein kinases carry out phosphorylation of osmolyte transporters and have been shown to play a crucial role in cell volume homeostasis. In fact phosphorylation of osmolyte transporters on their conserved residues regulates the uptake and efflux of osmolytes by cells. Additionally, accumulated osmolytes in turn have been shown to modulate the structure and functioning of protein kinases. The present review has tried to provide an overview about the role of protein kinases in regulation of osmolyte accumulation under stress conditions. Due to their ability of regulating osmolyte accumulation, potential of protein kinases as therapeutic targets for diseases like cancer has also been highlighted.


1. F. Lang, G. L. Busch, M. Ritter, H. Volkl, S. Waldegger, E. Gulbins and D. Haussinger: Functional significance of cell volume regulatory mechanisms. Physiol Rev, 78(1), 247-306 (1998)
DOI: 10.1152/physrev.1998.78.1.247

2. D. Gnutt, O. B. E. Edengeiser, M. Havenith and S. Ebbinghaus: Imperfect crowding adaptation of mammalian cells towards osmotic stress and its modulation by osmolytes. Mol BioSyst, 13, 2218-2221 (2017)
DOI: 10.1039/C7MB00432J

3. H. M. Kwon. and J. S. Handler: Cell volume regulated transporters of compatible osmolytes. Curr Opin in Cell Biol,7, 465-471 (1995)
DOI: 10.1016/0955-0674(95)80002-6

4. P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero: Living with water stress: evolution of osmolyte systems. Science, 217(4566), 1214-22 (1982)
DOI: 10.1126/science.7112124

5. Pankaj Attri, T. Sarinont, E. H. Choi, H. Seo, A. E. Cho, K. Koga & M. Shiratani: The protective action of osmolytes on the deleterious effects of gamma rays and atmospheric pressure plasma on protein conformational changes. Sci reports, 7(8968) (2017)
DOI: 10.1038/s41598-017-08643-1

6. P. H. Yancey: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol, 208(Pt 15), 2819-30 (2005)
DOI: 10.1242/jeb.01730

7. Y. Okada: Ion Channels and Transporters Involved in Cell Volume Regulation and Sensor Mechanisms. Cell Biochem and Biophy,, 41, 233-258 (2004)
DOI: 10.1385/CBB:41:2:233

8. J. S. Handler and H. M. Kwon: Regulation of renal cell organic osmolyte transport by tonicity. Am J Physiol, 265(6 Pt 1), C1449-55 (1993)
DOI: 10.1152/ajpcell.1993.265.6.C1449

9. J. D. Ferraris and M. B. Burg: Tonicity-dependent regulation of osmoprotective genes in mammalian cells. Contrib Nephrol, 152, 125-41 (2006)
DOI: 10.1159/000096320

10. S. Uchida, A. Yamauchi, A. S. Preston, H. M. Kwon and J. S. Handler: Medium tonicity regulates expression of the Na(+)- and Cl(-)-dependent betaine transporter in Madin-Darby canine kidney cells by increasing transcription of the transporter gene. J Clin Invest, 91(4), 1604-7 (1993)
DOI: 10.1172/JCI116367

11. H. M. Kwon, A. Yamauchi, S. Uchida, A. S. Preston, A. Garcia-Perez, M. B. Burg and J. S. Handler: Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem, 267(9), 6297-301 (1992)

12. A. S. Preston, A. Yamauchi, H. M. Kwon and J. S. Handler: Activators of protein kinase A and of protein kinase C inhibit MDCK cell myo-inositol and betaine uptake. J Am Soc Nephrol, 6(6), 1559-64 (1995)

13. D. B. Hansen, M. B. Friis, E. K. Hoffmann and I. H. Lambert: Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts. J Membr Biol, 245(2), 77-87 (2012)
DOI: 10.1007/s00232-012-9416-8

14. C. El-Chami, I. S. Haslam, M. C. Steward & C. A. O'Neill: Organic osmolytes preserve the function of the developing tight junction in ultraviolet B-irradiated rat epidermal keratinocytes. Sci reports, 8 (2018)
DOI: 10.1038/s41598-018-22533-0

15. D. W. Bolen: Protein stabilization by naturally occurring osmolytes. Methods Mol Biol, 168, 17-36 (2001)
DOI: 10.1385/1-59259-193-0:017

16. E. D. Kwoon. M. B. Burg, and D. Kultz: Regulation of gene expression by hypertonicity. Annu. Rev. Physiol, (59) 437-455. (1997)
DOI: 10.1146/annurev.physiol.59.1.437

17. M. B. Burg and J. D. Ferraris: Intracellular organic osmolytes: function and regulation. J Biol Chem, 283(12), 7309-13 (2008)
DOI: 10.1074/jbc.R700042200

18. K. Tarun, M. Y, R.S. Laishram: Role of osmolytes in regulating immune system. . Curr Pharm Des( 22), 3050-3057 ( 2016)
DOI: 10.2174/1381612822666160307150059

19. A. Panuszko, E. Kaczkowska, and J. Stangret: General Mechanism of Osmolytes Influence on Protein Stability Irrespective of the Type of Osmolyte Cosolvent. J. Phys. Chem, 120, 11159−11169 (2016)
DOI: 10.1021/acs.jpcb.6b10119

20. I. Slama, C. Abdelly, A. Bouchereau, T. Flowers and A. Savoure: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot, 115(3), 433-47 (2015)
DOI: 10.1093/aob/mcu239

21. O. Bounedjah, L. Hamon, P. Savarin, B. Desforges, P. A. Curmi and D. Pastre: Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes. J Biol Chem, 287(4), 2446-58 (2012)
DOI: 10.1074/jbc.M111.292748

22. B. H. Stilb, C. V. Roeyen, K. Rascher, H. G. Hartwig, A. Huth, M. W. Seeliger, U. Warskulat and D. Haussinger: Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J, 16(2), 231-3 (2002)
DOI: 10.1096/fj.01-0691fje

23. X. Han, A. M. Budreau and R. W. Chesney: The taurine transporter gene and its role in renal development. Amino Acids, 19(3-4), 499-507 (2000)
DOI: 10.1007/s007260070002

24. C. Denkert, U. Warskulat, F. Hensel, and D. Haussinger: Osmolyte Strategy in Human Monocytes and Macrophages: Involvement of p38MAPK in Hyperosmotic Induction of Betaine and Myoinositol Transporters. ArchBiochem biophys,354(1), 172-180 (1998)
DOI: 10.1006/abbi.1998.0661

25. U. Warskulat, F. Zhang and D. Haussinger: Taurine is an osmolyte in rat liver macrophages (Kupffer cells). J Hepatol, 26(6), 1340-7 (1997)
DOI: 10.1016/S0168-8278(97)80470-9

26. B. D. Paepe, J. Zscontzsch, T. Sokcevic, J. Weis, J. Schmidt and J. L. De Bleecker: Induction of Osmolyte Pathways in Skeletal Muscle Inflammation: Novel Biomarkers for Myositis. Front. Neurol., 9:(846.) (2018)
DOI: 10.3389/fneur.2018.00846

27. B. Kempf and E. Bremer: Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol, 170(5), 319-30 (1998)
DOI: 10.1007/s002030050649

28. J. Henderson, A. Ly, A. Lu, D. E. Culham and J. M. Wood: Osmoregulatory systems of Escherichia coli: identification of betaine-carnitine-choline transporter family member BetU and distributions of betU and trkG among pathogenic and nonpathogenic isolates. J Bacteriol, 186(2), 296-306 (2004)
DOI: 10.1128/JB.186.2.296-306.2004

29. N. Csonka and A. D. Hanson: Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol, 45, 569-606 (1991)
DOI: 10.1146/annurev.mi.45.100191.003033

30. J. M. Wood: Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membr Biol, 106(3), 183-202 (1988)
DOI: 10.1007/BF01872157

31. W. R. Schwan and K. J. Wetzel: Osmolyte transport in Staphylococcus aureus and the role in pathogenesis. World J Clin Infect Dis, (6) 22-27. (2016)
DOI: 10.5495/wjcid.v6.i2.22

32. B. Pourkomailian and I. R. Booth: Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of the two transport systems. Microbiology, 140 ( Pt 11), 3131-8 (1994)
DOI: 10.1099/13500872-140-11-3131

33. H. Henrike, W. Kamphuis, R. D. Sleator, J. A. Wouters, C. Hill and T. Abee: Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol, 70(5), 2912-8 (2004)
DOI: 10.1128/AEM.70.5.2912-2918.2004

34. D. E. Nelson, G. Rammesmayer and H. J. Bohnert: Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell, 10(5) 753-64 (1998)
DOI: 10.1105/tpc.10.5.753

35. A. Ueda, Y. Y. Yamane and T. Takabe: Salt stress enhances proline utilization in the apical region of barley roots. Biochem Biophys Res Commun, 355(1), 61-6 (2007)
DOI: 10.1016/j.bbrc.2007.01.098

36. R. Schwacke, S. Grallath, K. E. Breitkreuz, E. Stransky, H. Stransky, W. B. Frommer and D. Rentsch: LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell, 11(3), 377-92 (1999)
DOI: 10.2307/3870867

37. J. C. Cushman: Osmoregulation in Plants: Implications for Agriculture. Am Zoology, 41, 758-769 (2001)
DOI: 10.1093/icb/41.4.758

38. J. K. Madhulika Singh, Samiksha Singh,Vijay Pratap Singh, Sheo Mohan Prasad: Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol, (2015)

39. J. Giri: Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav, 6(11), 1746-51 (2011)
DOI: 10.4161/psb.6.11.17801

40. E. K. Hoffmann, I. H. Lambert and S. F. Pedersen: Physiology of Cell Volume Regulation in Vertebrates. Physiol Rev, 89, 193-277 ( 2009)
DOI: 10.1152/physrev.00037.2007

41. S. A. Kempson, Y. Zhou and N. C. Danbolt: The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol, 5, 159 (2014)
DOI: 10.3389/fphys.2014.00159

42. E. K. Hoffmann, I. H. Lambert and S. F. Pedersen: Physiology of cell volume regulation in vertebrates. Physiol Rev, 89(1), 193-277 (2009)
DOI: 10.1152/physrev.00037.2007

43. J. Abramson,W. E.: Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol, 19(4), 425-432. ( 2009)
DOI: 10.1016/j.sbi.2009.06.002

44. F. Klaus, M. Palmada, R. Lindner, J. Laufer, S. Jeyaraj, F. Lang and C. Boehmer: Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1. J Physiol, 586(6), 1539-47 (2008)
DOI: 10.1113/jphysiol.2007.146191

45. L. J. Irarrazabal, C. E, M. B. Burg, and J. D. Ferraris: ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP. Proc Natl Acad Sci USA 1018809-8814 (2004)
DOI: 10.1073/pnas.0403062101

46. H. Miyakawa, S. K. Woo, S. C. Dahl, J. S. Handler and H. M. Kwon: Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci U S A, 96(5), 2538-42 (1999)
DOI: 10.1073/pnas.96.5.2538

47. C. Lopez-Rodriguez, C. L. Antos, J. M. Shelton, J. A. Richardson, F. Lin, T. I. Novobrantseva, R. T. Bronson, P. Igarashi, A. Rao and E. N. Olson: Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc Natl Acad Sci U S A, 101(8), 2392-7 (2004)
DOI: 10.1073/pnas.0308703100

48. S. Maallem, M. Mutin, H. M. Kwon and M. L. Tappaz: Differential cellular distribution of tonicity-induced expression of transcription factor TonEBP in the rat brain following prolonged systemic hypertonicity. Neurosci, 137(1), 51-71 (2006)
DOI: 10.1016/j.neuroscience.2005.07.037

49. S. Maallem, A. Berod, M. Mutin, H. M. Kwon and M. L. Tappaz: Large discrepancies in cellular distribution of the tonicity-induced expression of osmoprotective genes and their regulatory transcription factor TonEBP in rat brain. Neurosci, 142(2), 355-68 (2006)
DOI: 10.1016/j.neuroscience.2006.06.028

50. M. Takenaka, A. S. Preston, H. M. Kwon and J. S. Handler: The tonicity-sensitive element that mediates increased transcription of the betaine transporter gene in response to hypertonic stress. J Biol Chem, 269(47), 29379-81 (1994)

51. T. Ito, Y. Fujio, M. Hirata, T. Takatani, T. Matsuda, S. Muraoka, K. Takahashi and J. Azuma: Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J, 382(Pt 1), 177-82 (2004)
DOI: 10.1042/BJ20031838

52. A. Yamauchi, S. Uchida, A. S. Preston, H. M. Kwon and J. S. Handler: Hypertonicity stimulates transcription of gene for Na(+)-myo-inositol cotransporter in MDCK cells. Am J Physiol, 264(1 Pt 2), F20-3 (1993)
DOI: 10.1152/ajprenal.1993.264.1.F20

53. H. M. Kwon and J. S. Handler: Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol, 7(4), 465-71 (1995)
DOI: 10.1016/0955-0674(95)80002-6

54. S. A. Kempson: Differential activation of system A and betaine/GABA transport in MDCK cell membranes by hypertonic stress. Biochim Biophys Acta, 1372(1), 117-23 (1998)
DOI: 10.1016/S0005-2736(98)00051-0

55. A. Yamauchi, H. M. Kwon, S. Uchida, A. S. Preston and J. S. Handler: Myo-inositol and betaine transporters regulated by tonicity are basolateral in MDCK cells. Am J Physiol, 261(1 Pt 2), F197-202 (1991)
DOI: 10.1152/ajprenal.1991.261.1.F197

56. J. Oenarto, B. Gorg, M. Moos, H. J. Bidmon and D. Haussinger: Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys, 560, 59-72 (2014)
DOI: 10.1016/j.abb.2014.06.024

57. R. C. Bartolo and J. A. Donald: The effect of water deprivation on the tonicity responsive enhancer binding protein (TonEBP) and TonEBP-regulated genes in the kidney of the Spinifex hopping mouse, Notomys alexis. J Exp Biol, 211(Pt 6), 852-9 (2008)
DOI: 10.1242/jeb.006395

58. D. S. Hamad, A. G. Perez, J. D. Ferraris, E. M. Peters, and M. B. Burg: Induction of gene expression by heat shock versus osmotic stress. Am. J. Physiol., 267(36), 28-34 (1994)
DOI: 10.1152/ajprenal.1994.267.1.F28

59. I. H. Lambert: Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res, 29(1), 27-63 (2004)
DOI: 10.1023/B:NERE.0000010433.08577.96

60. D. W. Good: Hyperosmolality inhibits bicarbonate absorption in rat medullary thick ascending limb via a protein-tyrosine kinase-dependent pathway. J Biol Chem, 270(17), 9883-9 (1995)
DOI: 10.1074/jbc.270.17.9883

61. E. Krump, K. Nikitas and S. Grinstein: Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem, 272(28), 17303-11 (1997)
DOI: 10.1074/jbc.272.28.17303

62. A. Y. Agnes S. Preston, H. M. Kwon, and J. S. Handler: Activators of Protein Kinase A and of Protein Kinase C Inhibit MDCK Cell myo-lnositol and Betaine Uptake. J Am Soc of Nephrol, 6, 1559-1564 ( 1995)

63. D. P. Jones, C. Dowling, L. A. M and R. W. Chesney: Regulation of Taurine Transporter Activity in LLC-PK Cells: Role of Protein Synthesis and Protein Kinase C Activation. JAm Soc Nephrol 2, 1021-1029 (1991)

64. Y. D. Shaul and R. Seger: The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, 1773(8), 1213-26 (2007)
DOI: 10.1016/j.bbamcr.2006.10.005

65. W. Kolch: Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol, 6(11), 827-37 (2005)
DOI: 10.1038/nrm1743

66. P. Bruzdziak, A. Panuszko, E. Kaczkowska, B. Piotrowski, A. Daghir, S. Demkowicz and J. Stangret: Taurine as a water structure breaker and protein stabilizer. Amino Acids (2017)
DOI: 10.1007/s00726-017-2499-x

67. I. H. Lambert, K. D, J. B. Holm, O. H. Mortensen: Physiological role of taurine--from organism to organelle. Acta Physiol. , 213(1), 191-212. (2015)
DOI: 10.1111/apha.12365

68. N. J. Mezzomoa, B. D. Fontana, , A. V. Kalueff, L.J.G. Barcellos, D. B. Rosemberg: Understanding taurine CNS activity using alternative zebrafish models. Neurosci and Biobeh Rev, (2017)
DOI: 10.1016/j.neubiorev.2017.09.008

69. N. Mohamed, H.A. Gawad,: Taurine dietary supplementation attenuates brain, thyroid, testicular disturbances and oxidative stress in streptozotocin-induced diabetes mellitus in male rats. BJBAS 6(3), 247-252 (2017)
DOI: 10.1016/j.bjbas.2017.04.006

70. U. Warskulat, B. H. Stilb, E. Oermann, K. Zilles, H. Haas, F. Lang and D. Haussinger: Phenotype of the taurine transporter knockout mouse. Methods Enzymol, 428, 439-58 (2007)
DOI: 10.1016/S0076-6879(07)28025-5

71. U. Warskulat, E. Borsch, R. Reinehr, B. H. Stilb, C. Roth, M. Witt and D. Haussinger: Taurine deficiency and apoptosis: findings from the taurine transporter knockout mouse. Arch Biochem Biophys, 462(2), 202-9 (2007)
DOI: 10.1016/j.abb.2007.03.022

72. S. Kearns and R. Dawson, Jr.: Cytoprotective effect of taurine against hypochlorous acid toxicity to PC12 cells. Adv Exp Med Biol, 483, 563-70 (2000)
DOI: 10.1007/0-306-46838-7_60

73. S. W. Schaffer, J. Azuma and M. Mozaffari: Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol, 87(2), 91-9 (2009)
DOI: 10.1139/Y08-110

74. L. Aerts and F. A. Van Assche: Taurine and taurine-deficiency in the perinatal period. J Perinat Med, 30(4), 281-6 (2002)
DOI: 10.1515/JPM.2002.040

75. G. Atmaca: Antioxidant effects of sulfur-containing amino acids. Yonsei Med J, 45(5), 776-88 (2004)
DOI: 10.3349/ymj.2004.45.5.776

76. R. Lourenco and M. E. Camilo: Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp, 17(6), 262-70 (2002)

77. N. H. Chen, M. E. Reith and M. W. Quick: Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch, 447(5), 519-31 (2004)
DOI: 10.1007/s00424-003-1064-5

78. J. H. Jacobsen, C. A. Clement, M. B. Friis and I. H. Lambert: Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts. Pflugers Arch, 457(2), 327-37 (2008)
DOI: 10.1007/s00424-008-0517-2

79. K. A. Poulsen, T. Litman, J. Eriksen, J. Mollerup and I. H. Lambert: Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells. Amino Acids, 22(4), 333-50 (2002)
DOI: 10.1007/s007260200019

80. J. W. Voss, S. F. Pedersen, S. T. Christensen and I. H. Lambert: Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts. Eur J Biochem, 271(23-24), 4646-58 (2004)
DOI: 10.1111/j.1432-1033.2004.04420.x

81. D. B. Hansen, B. Guerra, J. H. Jacobsen and I. H. Lambert: Regulation of taurine homeostasis by protein kinase CK2 in mouse fibroblasts. Amino Acids, 40(4), 1091-106 (2011)
DOI: 10.1007/s00726-010-0732-y

82. U. Gether, P. H. Andersen, O. M. Larsson and A. Schousboe: Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci, 27(7), 375-83 (2006)
DOI: 10.1016/j.tips.2006.05.003

83. A. Yamashita, S. K. Singh, T. Kawate, Y. Jin and E. Gouaux: Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature, 437(7056), 215-23 (2005)
DOI: 10.1038/nature03978

84. I. Zelikovic, A. Budreau, R. W. Chesney, C. Iwahashi and P. Lohstroh: Ionic and voltage requirements for tubular taurine transport. Prog Clin Biol Res, 351, 307-15 (1990)

85. J. A. Hall, J. Kirk, J. R. Potts, C. Rae and K. Kirk: Anion channel blockers inhibit swelling-activated anion, cation, and nonelectrolyte transport in HeLa cells. Am J Physiol, 271(2 Pt 1), C579-88 (1996)
DOI: 10.1152/ajpcell.1996.271.2.C579

86. I. H. Lambert and D. B. Hansen: Regulation of taurine transport systems by protein kinase CK2 in mammalian cells. Cell Physiol Biochem, 28(6), 1099-110 (2011)
DOI: 10.1159/000335846

87. X. Han, A. M. Budreau and R. W. Chesney: Role of conserved peptide in taurine transporter inactivation modulated by protein kinase C. J Am Soc Nephrol, 7(10), 2088-96 (1996)

88. X. Han, A. M. Budreau and R. W. Chesney: Ser-322 is a critical site for PKC regulation of the MDCK cell taurine transporter (pNCT). J Am Soc Nephrol, 10(9), 1874-9 (1999)

89. X. Han, A. B. Patters, D. P. Jones, I. Zelikovic and R. W. Chesney: The taurine transporter: mechanisms of regulation. Acta Physiol, (187 ) 61-73 (2006)
DOI: 10.1111/j.1748-1716.2006.01573.x

90. X. Han, A. B. Patters and R. W. Chesney: Gating of taurine transport: role of the fourth segment of the taurine transporter. Adv Exp Med Biol, 526, 149-57 (2003)
DOI: 10.1007/978-1-4615-0077-3_19

91. P. Vassilev, T. Scheuer and W. A. Catterall: Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc Natl Acad Sci U S A, 86(20), 8147-51 (1989)
DOI: 10.1073/pnas.86.20.8147

92. W. Stuhmer, F. Conti, H. Suzuki, X. D. Wang, M. Noda, N. Yahagi, H. Kubo and S. Numa: Structural parts involved in activation and inactivation of the sodium channel. Nature, 339(6226), 597-603 (1989)
DOI: 10.1038/339597a0

93. S. Sarno and L. A. Pinna: Protein kinase CK2 as a druggable target. Mol Biosyst, 4(9), 889-94 (2008)
DOI: 10.1039/b805534c

94. B. Guerra and O. G. Issinger: Protein kinase CK2 in human diseases. Curr Med Chem, 15(19), 1870-86 (2008)
DOI: 10.2174/092986708785132933

95. D. Zhu, J. Hensel, R. Hilgraf, M. Abbasian, O. Pornillos, G. Deyanat-Yazdi, X. H. Hua and S. Cox: Inhibition of protein kinase CK2 expression and activity blocks tumor cell growth. Mol Cell Biochem, 333(1-2), 159-67 (2010)
DOI: 10.1007/s11010-009-0216-0

96. C. C. Schneider, A. Hessenauer, M. Montenarh and C. Gotz: p53 is dispensable for the induction of apoptosis after inhibition of protein kinase CK2. Prostate, 70(2), 126-34 (2010)
DOI: 10.1002/pros.21044

97. C. P. Downes and C. H. Macphee: myo-inositol metabolites as cellular signals. Eur J Biochem, 193(1), 1-18 (1990)
DOI: 10.1111/j.1432-1033.1990.tb19297.x

98. E. U. Frevert and B. B. Kahn: Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol, 17(1), 190-8 (1997)
DOI: 10.1128/MCB.17.1.190

99. B. A. Molitoris, I. E. Karl and W. H. Daughaday: Concentration of myo-inositol in skeletal muscle of the rat occurs without active transport. J Clin Invest, 65(4), 783-8 (1980)
DOI: 10.1172/JCI109728

100. J. Nakamura, M. A. Del Monte, D. Shewach, S. A. Lattimer and D. A. Greene: Inhibition of phosphatidylinositol synthase by glucose in human retinal pigment epithelial cells. Am J Physiol, 262(4 Pt 1), E417-26 (1992)
DOI: 10.1152/ajpendo.1992.262.4.E417

101. B. Hille, D. E., M. Kruse, O. Vivas, B.C Suh: Phosphoinositides regulate ion channels. Biochim Biophys Acta, 1851(6), 844-856 (2015)
DOI: 10.1016/j.bbalip.2014.09.010

102. Y. H. Lien, S. J, L.Chan: Effects of hypernatremia on organic brain osmoles. J Clin Invest, 85(5), 1427-1435 (1990)
DOI: 10.1172/JCI114587

103. G. T. Berry, W. Z, S.F. Dreha, B.M. Finucane, R. A. Zimmerman: In vivo brain myoinositol levels in children with Down syndrome. J Pediatr (Rio J), 135(1), 94-97 (1999)
DOI: 10.1016/S0022-3476(99)70334-3

104. T. Watanabe, S. A, I. Akiguchi: Hippocampal metabolites and memory performances in patients with amnestic mild cognitive impairment and Alzheimer's disease. Neurobiol Learn Mem, 97(3), 287-293 (2012)
DOI: 10.1016/j.nlm.2012.01.006

105. C. Zhou and P. R. Cammarata: Cloning the bovine Na+/myo-inositol cotransporter gene and characterization of an osmotic responsive promoter. Exp Eye Res, 65(3), 349-63 (1997)
DOI: 10.1006/exer.1997.0335

106. Z. Dai, S. K. Chung, D. Miao, K. S. Lau, A. W. H. Chan, and A.W.C Kung: Sodium/myo-Inositol Cotransporter 1 and myo-Inositol Are Essential for Osteogenesis and Bone Formation. Bone and Min Res J, 26(3), 582-590 (2011 )
DOI: 10.1002/jbmr.240

107. F. Porcellati, Y. Hosaka, T. Hlaing, M. Togawa, D. D. Larkin, A. Karihaloo, M. J. Stevens, P. D. Killen, and D. A. Greene: Alternate splicing in human Na1-MI cotransporter gene yields differentially regulated transport isoforms. Am. J.Physiol., 276(Cell Physiol. 45), C1325-C1337 (1999)
DOI: 10.1152/ajpcell.1999.276.6.C1325

108. J. S. Handler and H. M. Kwon: Regulation of the myo-inositol and betaine cotransporters by tonicity. Kidney Int, 49(6), 1682-3 (1996)
DOI: 10.1038/ki.1996.246

109. J. A. McCormick, V. Bhalla, A. C. Pao and D. Pearce: SGK1: a rapid aldosterone-induced regulator of renal sodium reabsorption. Physiology (Bethesda), 20, 134-9 (2005)
DOI: 10.1152/physiol.00053.2004

110. J. Hou, H. J. Speirs, J. R. Seckl and R. W. Brown: Sgk1 gene expression in kidney and its regulation by aldosterone: spatio-temporal heterogeneity and quantitative analysis. J Am Soc Nephrol, 13(5), 1190-8 (2002)
DOI: 10.1097/01.ASN.0000013702.73570.3B

111. S. Warntges, B. Friedrich, G. Henke, C. Duranton, P. A. Lang, S. Waldegger, R. Meyermann, D. Kuhl, E. J. Speckmann, N. Obermuller, R. Witzgall, A. F. Mack, H. J. Wagner, A. Wagner, S. Broer and F. Lang: Cerebral localization and regulation of the cell volume-sensitive serum- and glucocorticoid-dependent kinase SGK1. Pflugers Arch, 443(4), 617-24 (2002)
DOI: 10.1007/s00424-001-0737-1

112. Z. Hosseinzadeh, S. K. Bhavsar and F. Lang: Down-regulation of the myoinositol transporter SMIT by JAK2. Cell Physiol Biochem, 30(6), 1473-80 (2012)
DOI: 10.1159/000343335

113. M. Uldry, M. Ibberson, J. D. Horisberger, J. Y. Chatton, B. M. Riederer and B. Thorens: Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. The EMBO Journal 20(16), 4467-4477 (2001)
DOI: 10.1093/emboj/20.16.4467

114. I. Matskevitch, C. A. Wagner, C. Stegen, S. Broer, B. Noll, T. Risler, H. M. Kwon, J. S. Handler, S. Waldegger, A. E. Busch, and F. Lang: Functional Characterization of the Betaine/g-Aminobutyric Acid Transporter BGT-1 Expressed in Xenopus Oocytes. J Biol Chem, 274(24), 16709-16716, (1999)
DOI: 10.1074/jbc.274.24.16709

115. L. Hoffmann, G. Brauers, T. Gehrmann, D. Haussinger, E. Mayatepek, F. Schliess and B. C. Schwahn: Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol, 304(9), G835-46 (2013)
DOI: 10.1152/ajpgi.00332.2012

116. T. Nakanishi, R. J. Turner and M. B. Burg: Osmoregulation of betaine transport in mammalian renal medullary cells. Am J Physiol, 258(4 Pt 2), F1061-7 (1990)
DOI: 10.1152/ajprenal.1990.258.4.F1061

117. L. A. Borden, K. E. Smith, E. L. Gustafson, T. A. Branchek and R. L. Weinshank: Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem, 64(3), 977-84 (1995)
DOI: 10.1046/j.1471-4159.1995.64030977.x

118. A. Rasola, L. J. Galietta, V. Barone, G. Romeo and S. Bagnasco: Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett, 373(3), 229-33 (1995)
DOI: 10.1016/0014-5793(95)01052-G

119. L. A. Borden: GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int, 29(4), 335-56 (1996)
DOI: 10.1016/0197-0186(95)00158-1

120. B. L. Corcuera, Q. R. Liu, S. Mandiyan, H. Nelson and N. Nelson: Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. J Biol Chem, 267(25), 17491-3 (1992)

121. S. Massari, C. Vanoni, R. Longhi, P. Rosa and G. Pietrini: Protein kinase C-mediated phosphorylation of the BGT1 epithelial gamma-aminobutyric acid transporter regulates its association with LIN7 PDZ proteins: a post-translational mechanism regulating transporter surface density. J Biol Chem, 280(8), 7388-97 (2005)
DOI: 10.1074/jbc.M412668200

122. S. Kempson, B. Anderson, M. Levi and J. Blaine: Nitroprusside upregulates the renal betaine/GABA transporter in MDCK cells by plasma membrane insertion. FASEBJ, 25(1038) (2011)

123. C. Perego, C. Vanoni, A. Villa, R. Longhi, S. M. Kaech, E. Frohli, A. Hajnal, S. K. Kim and G. Pietrini: PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J, 18(9), 2384-93 (1999)
DOI: 10.1093/emboj/18.9.2384

124. Z. Hosseinzadeh, M. Shojaiefard, S. K. Bhavsar, F. Lang: Up-regulation of the betaine/GABA transporter BGT1 by JAK2. Biochem and Biophy Res Comm 420, 172-177 (2012)
DOI: 10.1016/j.bbrc.2012.02.137

125. Z. Hosseinzadeh, S. K. Bhavsar, M. Sopjani, I. Alesutan, A. Saxena, M. D. Sopjani and F. Lang: Regulation of the glutamate transporters by JAK2. Cell Physiol Biochem, 28(4), 693-702 (2011)
DOI: 10.1159/000335763

126. C. Munoz, M. Sopjani, M. D. Sopjani, A. Almilaji, M. Foller and F. Lang: Downregulation of the osmolyte transporters SMIT and BGT1 by AMP-activated protein kinase. Biochem Biophys Res Commun, 422(3), 358-62 (2012)
DOI: 10.1016/j.bbrc.2012.04.092

127. F Buontempo, J. A. McCubery, E. Orsini, M. Ruzzene, A. Cappellini, A. Lonetti, C. Evangelisti, F. Chiarini, C. Evangelisti, J.T. Barata and A.M. Martelli: Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia 32, 1-10 (2018)
DOI: 10.1038/leu.2017.301

128. J. H. Trembley, Z. Chen, G. Unger, J. Slaton, B. T. Kren, C. V. Waes and K. Ahmed: Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors, 36(3), 187-95 (2010)
DOI: 10.1002/biof.96

129. B. Guerra, and O. G. Issinger: Protein Kinase CK2 in Human Diseases. Curr Med Chem, 15(1870-1886) (2008)
DOI: 10.2174/092986708785132933

130. X. Zhang, S. Tu, Y. Wang, B. Xu and F. Wan: Mechanism of taurine-induced apoptosis in human colon cancer cells. Acta Biochim Biophys Sin (Shanghai), 46(4), 261-72 (2014)
DOI: 10.1093/abbs/gmu004

131. D. F. Nathana J. Mezzomo, Allan V. Kalueff, Leonardo J.G. Barcellos, Denis B. Rosemberg,: Understanding taurine CNS activity using alternative zebrafish models. Neurosci and Biobeh Rev (2017)

132. F. D. Rumjanek: Osmolyte Induced Tumorigenesis and Metastasis: Interactions With Intrinsically Disordered Proteins. Front Oncol, 8, 353 (2018)
DOI: 10.3389/fonc.2018.00353

133. S. Diamant, N. Eliahu, D. Rosenthal and P. Goloubinoff: Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem, 276(43), 39586-91 (2001)
DOI: 10.1074/jbc.M103081200

134. J. F.Barata and M. S.Penna: Opposing effects of two osmolytes--trehalose and glycerol--on thermal inactivation of rabbit muscle 6-phosphofructo-1-kinase. Mol Cell Biochem, 269(1-2), 203-7 (2005)
DOI: 10.1007/s11010-005-3090-4

135. F. G. Meng, Y. K. Hong, H. W. He, A. E. Lyubarev, B. I. Kurganov, Y. B. Yan and H. M. Zhou: Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase. Biophys J, 87(4), 2247-54 (2004)
DOI: 10.1529/biophysj.104.044784

136. Y. Xia, Y. D. Park, H. Mu, H. M. Zhou, X. Y. Wang and F. G. Meng: The protective effects of osmolytes on arginine kinase unfolding and aggregation. Int J Biol Macromol, 40(5), 437-43 (2007)
DOI: 10.1016/j.ijbiomac.2006.10.004

137. M. Ishibashi, K. Sakashita, H. Tokunaga, T. Arakawa and M. Tokunaga: Activation of halophilic nucleoside diphosphate kinase by a non-ionic osmolyte, trimethylamine N-oxide. J Protein Chem, 22(4), 345-51 (2003)
DOI: 10.1023/A:1025338106922

138. X. B. Sun, G. T. L, J. Lee, J. X. Wan, H. Z. Lin, J. M. Yang, Q. Wang, Y. D. Park: Effects of osmolytes on the refolding of recombinant Pelodiscus sinensis brain type creatine kinase. Proc Biochem, 83-92 (2018 )
DOI: 10.1016/j.procbio.2018.02.027

Abbreviations: TonEBP, Tonicity enhancer binding protein; TonE, Tonicity enhancer; RER, Rough endoplasmic reticulum; PKC, Protein kinase C; PKA, Protein kinase A; JAK2, Janus kinase 2; SMIT, Sodium myoinositol transporter; TauT, Taurine transporter; BGT1, Betaine transporter; RPE, Retinal pigment epithelium; HMIT, H+ Myoinositol transporter; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; TMAO, trimethylamine -N-oxide; CK, creatine kinase; AK, arginine kinase, TM, transmembrane; CK2, casein kinase 2; MDCK, Madin-Darby canine kidney; PDZ, post synaptic density protein(PSD95), drosophila disc large tumor suppressor(Dlg1) and zonula occludens-1 protein(Zo-1)

Key Words: Osmolyte, Protein kinase, Cell volume regulation, Osmolyte transporter, Cancer, Phosphorylation, betaine transporter, taurine transporter, myoinositol transporter

Send correspondence to: Tanveer Ali Dar, Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, Tel: 91-9419639396, Fax: 91-194-227-2096, E-mail: tanveerali@kashmiruniversity.ac.in