[Frontiers in Bioscience, Landmark, 25, 1132-1171, March 1, 2020]

Low-cost preventive screening using carotid ultrasound in patients with diabetes

Vijay Viswanathan1, Ankush D. Jamthikar2, Deep Gupta2, Nizarudeen Shanu3, Anudeep Puvvula4, Narendra N. Khanna5, Luca Saba6, Tomaz Omerzum7, Klaudija Viskovic8, Sophie Mavrogeni9, Monika Turk10, John R. Laird11, Gyan Pareek12, Martin Miner13, Petros P. Sfikakis14, Athanasios Protogerou15, George D. Kitas16, Chithra Shankar17, Shalini Joshi18, Henreitta Fiscian19, Aba Ankomaba Folson20, Dee H. Wu21, Zoltan Ruzsa22, Andrew Nicolaides23, Aditya Sharma24, Deepak L. Bhatt25, Jasjit S. Suri26

1Professor M Viswanathan Diabetes Research Center, Royapuram, Tamil Nadu, India, 2Department of Elctronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, India, 3Department of ECE working with College of Engineering Karunagapally, India, 4Annu's Hospitals for Skin and Diabetes, Andhra Pradesh, India, 5Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India, 6Department of Radiology, University of Cagliari, Italy, 7Department of Neurology, University Medical Centre Maribor, Slovenia, 8Department of Radiology and Ultrasound, University Hospital for Infectious Diseases Croatia, 9Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece, 10Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia, 11Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA, 12Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA, 13Men’s Health Center, Miriam Hospital Providence, Rhode Island, USA, 14Rheumatology Unit, National Kapodistrian University of Athens, Greece, 15Department of Cardiovascular Prevention and Research Unit Clinic and Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Greece, 16R and D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United kingdom, 17Shree Polyclinic & Lab, Bangalore, India, 18Preventive Health Check, Fortis Hospital, Bannerghatta Road, Bengaluru, India, 19MD, Department of endocrinology, Ridge Hospital, Accra, Ghana, 20Head of Cardiology, Greater Accra Regional Hospital, Ridge, Accra, Ghana, 21Department of Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA, 22Semmelweis University, Budapest, Hungary, 23Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus, 24Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA, 25Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, USA, 26Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA


1. Abstract
2. Introduction
3. Search strategy
4. A Brief Note on the biology of diabetes and atherosclerosis
    4.1. A brief description of atherosclerosis
    4.2. A brief description of the biology of diabetes
    4.3. Association of atherosclerosis due to diabetes
5. Conventional Screening Tools for CVD Risk Assessment
6. Carotid Ultrasound Screening tools for CVD risk assessment
    6.1. Association of carotid atherosclerosis and CVD/stroke risk
    6.2. Debate on the use of CUSIP for CVD risk assessment
    6.3. Measurement of Carotid Ultrasound Image-based phenotypes
    6.4. Validation of Automated Full-length Measurement
7. Integrated Screening Tools for CVD risk assessment
8. Discussion
    8.1. A special note on clinical trials and case reports in preventive screening
    8.2. Morphology-based risk assessment methods
    8.3. Financial burden of diabetes mellitus in India
    8.4. Manifestations
9. Conclusion
10. Disclosures
11. References


Diabetes and atherosclerosis are the predominant causes of stroke and cardiovascular disease (CVD) both in low- and high-income countries. This is due to the lack of appropriate medical care or high medical costs. Low-cost 10-year preventive screening can be used for deciding an effective therapy to reduce the effects of atherosclerosis in diabetes patients. American College of Cardiology (ACC)/American Heart Association (AHA) recommended the use of 10-year risk calculators, before advising therapy. Conventional risk calculators are suboptimal in certain groups of patients because their stratification depends on (a) current blood biomarkers and (b) clinical phenotypes, such as age, hypertension, ethnicity, and sex. The focus of this review is on risk assessment using innovative composite risk scores that use conventional blood biomarkers combined with vascular image-based phenotypes. AtheroEdge™ tool is beneficial for low-moderate to high-moderate and low-risk to high-risk patients for the current and 10-year risk assessment that outperforms conventional risk calculators. The preventive screening tool that combines the image-based phenotypes with conventional risk factors can improve the 10-year cardiovascular/stroke risk assessment.


1. W. H. Organization: WHO Cardiovascular disease In,

2. P. Libby, P. M. Ridker and A. Maseri: Inflammation and atherosclerosis. Circulation, 105(9), 1135-1143 (2002)
DOI: 10.1161/hc0902.104353

3. P. Libby: Vascular biology of atherosclerosis: overview and state of the art. The American journal of cardiology, 91(3), 3-6 (2003)
DOI: 10.1016/S0002-9149(02)03143-0

4. P. Libby, P. M. Ridker and G. K. Hansson: Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317-325 (2011)
DOI: 10.1038/nature10146

5. E. Wagenknecht Lynne, D. Zaccaro, A. Espeland Mark, J. Karter Andrew, H. O'Leary Daniel and M. Haffner Steven: Diabetes and Progression of Carotid Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(6), 1035-1041 (2003)
DOI: 10.1161/01.ATV.0000072273.67342.6D

6. J. A. Beckman, M. A. Creager and P. Libby: Diabetes and AtherosclerosisEpidemiology, Pathophysiology, and Management. JAMA, 287(19), 2570-2581 (2002)
DOI: 10.1001/jama.287.19.2570

7. International Diabetes Federation: Diabetes facts & figures. In, (2017)

8. N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. da Rocha Fernandes, A. Ohlrogge and B. Malanda: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271-281 (2018)
DOI: 10.1016/j.diabres.2018.02.023

9. G. K. Hansson, P. Libby and I. Tabas: Inflammation and plaque vulnerability. Journal of internal medicine, 278(5), 483-493 (2015)
DOI: 10.1111/joim.12406

10. G. V. Heller: Evaluation of the patient with diabetes mellitus and suspected coronary artery disease. Am J Med, 118 Suppl 2, 9S-14S (2005)
DOI: 10.1016/j.amjmed.2005.01.045

11. T. Hammoud, J. F. Tanguay and M. G. Bourassa: Management of coronary artery disease: therapeutic options in patients with diabetes. J Am Coll Cardiol, 36(2), 355-65 (2000)
DOI: 10.1016/S0735-1097(00)00732-4

12. N. N. Khanna, A. D. Jamthikar, D. Gupta, A. Nicolaides, T. Araki, L. Saba, E. Cuadrado-Godia, A. Sharma, T. Omerzu, H. S. Suri, A. Gupta, S. Mavrogeni, M. Turk, J. R. Laird, A. Protogerou, P. P. Sfikakis, G. D. Kitas, V. Viswanathan and J. S. Suri: Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: A diabetic study. Comput Biol Med, 105, 125-143 (2019)
DOI: 10.1016/j.compbiomed.2019.01.002

13. N. N. Khanna, A. D. Jamthikar, D. Gupta, T. Araki, M. Piga, L. Saba, C. Carcassi, A. Nicolaides, J. R. Laird and H. S. Suri: Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1. 0. Medical & biological engineering & computing, 57(7), 1553-1566 (2019)
DOI: 10.1007/s11517-019-01975-2

14. J. Suri, M. Turk, A. Jamthikar, D. Gupta, N. Khanna, T. Araki, L. Saba, E. Cuadrado-Godia, A. Sharma and T. Omerzu: Performance evaluation of AECRS1. 0 using stroke risk calculators. In: European Journal of Neurology. Wiley 111 River ST, Hoboken 7030-5774, NJ USA, (2019)

15. A. Jamthikar, D. Gupta, N. N. Khanna, T. Araki, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, H. S. Suri and A. Gupta: A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography. Current atherosclerosis reports, 21(7), 25 (2019)
DOI: 10.1007/s11883-019-0788-4

16. R. B. D'agostino, R. S. Vasan, M. J. Pencina, P. A. Wolf, M. Cobain, J. M. Massaro and W. B. Kannel: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation, 117(6), 743-753 (2008)
DOI: 10.1161/CIRCULATIONAHA.107.699579

17. R. J. Stevens, V. Kothari, A. I. Adler, I. M. Stratton and R. R. Holman: The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clinical science, 101(6), 671-679 (2001)
DOI: 10.1042/cs1010671

18. V. Kothari, R. J. Stevens, A. I. Adler, I. M. Stratton, S. E. Manley, H. A. Neil and R. R. Holman: UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke, 33(7), 1776-1781 (2002)
DOI: 10.1161/01.STR.0000020091.07144.C7

19. D. C. Goff, D. M. Lloyd-Jones, G. Bennett, S. Coady, R. B. D'agostino, R. Gibbons, P. Greenland, D. T. Lackland, D. Levy and C. J. O'donnell: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 63(25 Part B), 2935-2959 (2014)
DOI: 10.1016/j.jacc.2013.11.005

20. P. M. Ridker, J. E. Buring, N. Rifai and N. R. Cook: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. Jama, 297(6), 611-619 (2007)
DOI: 10.1001/jama.297.6.611

21. N. D. R. Group: Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population. Circulation Journal, 70(10), 1249-1255 (2006)
DOI: 10.1253/circj.70.1249

22. R. Conroy, K. Pyörälä, A. e. Fitzgerald, S. Sans, A. Menotti, G. De Backer, D. De Bacquer, P. Ducimetiere, P. Jousilahti and U. Keil: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European heart journal, 24(11), 987-1003 (2003)
DOI: 10.1016/S0195-668X(03)00114-3

23. M. Duerden, N. O'Flynn and N. Qureshi: Cardiovascular risk assessment and lipid modification: NICE guideline. Br J Gen Pract, 65(636), 378-380 (2015)
DOI: 10.3399/bjgp15X685933

24. T. J. Anderson, J. Grégoire, G. J. Pearson, A. R. Barry, P. Couture, M. Dawes, G. A. Francis, J. Genest, S. Grover, M. Gupta, R. A. Hegele, D. C. Lau, L. A. Leiter, E. Lonn, G. B. J. Mancini, R. McPherson, D. Ngui, P. Poirier, J. L. Sievenpiper, J. A. Stone, G. Thanassoulis and R. Ward: 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Canadian Journal of Cardiology, 32(11), 1263-1282 (2016)
DOI: 10.1016/j.cjca.2016.07.510

25. R. L. Coleman, R. J. Stevens, R. Retnakaran and R. R. Holman: Framingham, SCORE, and DECODE Risk Equations Do Not Provide Reliable Cardiovascular Risk Estimates in Type 2 Diabetes. Diabetes Care, 30(5), 1292 (2007)
DOI: 10.2337/dc06-1358

26. N. R. Cook, N. P. Paynter, C. B. Eaton, J. E. Manson, L. W. Martin, J. G. Robinson, J. E. Rossouw, S. Wassertheil-Smoller and P. M. Ridker: Comparison of the Framingham and Reynolds Risk scores for global cardiovascular risk prediction in the multiethnic Women's Health Initiative. Circulation, 125(14), 1748-S11 (2012)
DOI: 10.1161/CIRCULATIONAHA.111.075929

27. H. T. Jørstad, E. B. Colkesen, S. M. Boekholdt, J. G. Tijssen, N. J. Wareham, K.-T. Khaw and R. J. Peters: Estimated 10-year cardiovascular mortality seriously underestimates overall cardiovascular risk. Heart, 102(1), 63 (2016)
DOI: 10.1136/heartjnl-2015-307668

28. R. J. Stevens, R. L. Coleman and R. R. Holman: Framingham risk equations underestimate coronary heart disease risk in diabetes. Diabet Med, 22(2), 228 (2005)
DOI: 10.1111/j.1464-5491.2005.01387.x

29. H. Silvennoinen, S. Ikonen, L. Soinne, M. Railo and L. Valanne: CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. American journal of neuroradiology, 28(1), 97-103 (2007)

30. M. Naghavi, P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Juhani Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I. K. Jang, W. Koenig, R. A. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, Jr., R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah and J. T. Willerson: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108(14), 1664-72 (2003)
DOI: 10.1161/01.CIR.0000087480.94275.97

31. A. Boi, A. D. Jamthikar, L. Saba, D. Gupta, A. Sharma, B. Loi, J. R. Laird, N. N. Khanna and J. S. Suri: A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography. Current atherosclerosis reports, 20(7), 33 (2018)
DOI: 10.1007/s11883-018-0736-8

32. J. M. Tarkin, M. R. Dweck, N. R. Evans, R. A. Takx, A. J. Brown, A. Tawakol, Z. A. Fayad and J. H. Rudd: Imaging atherosclerosis. Circulation research, 118(4), 750-769 (2016)
DOI: 10.1161/CIRCRESAHA.115.306247

33. J. B. Muhlestein, D. L. Lappe, J. A. Lima, B. D. Rosen, H. T. May, S. Knight, D. A. Bluemke, S. R. Towner, V. Le, T. L. Bair, A. L. Vavere and J. L. Anderson: Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA, 312(21), 2234-43 (2014)
DOI: 10.1001/jama.2014.15825

34. K. Gu, C. C. Cowie and M. I. Harris: Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care, 21(7), 1138-45 (1998)
DOI: 10.2337/diacare.21.7.1138

35. P. Libby: History of Discovery: Inflammation in Atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology, 32(9), 2045-2051 (2012)
DOI: 10.1161/ATVBAHA.108.179705

36. R. Ross: Atherosclerosis-an inflammatory disease. New England journal of medicine, 340(2), 115-126 (1999)
DOI: 10.1056/NEJM199901143400207

37. P. Libby and S. K. Clinton: The role of macrophages in atherogenesis. Current Opinion in Lipidology, 4(5), 355-363 (1993)
DOI: 10.1097/00041433-199310000-00003

38. A. J. Lusis: Atherosclerosis. Nature, 407(6801), 233-41 (2000)
DOI: 10.1038/35025203

39. E. Cuadrado-Godia, M. Maniruzzaman, T. Araki, A. Puvvula, M. J. Rahman, L. Saba, H. S. Suri, A. Gupta, S. K. Banchhor and J. S. Teji: Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Computers in biology and medicine, 101, 128-145 (2018)
DOI: 10.1016/j.compbiomed.2018.08.008

40. W. H. Organization: World Health Organization: Diabetes - Key Facts. In, World Health Organization (2018)

41. R. Bilous and R. Donnelly: Handbook of diabetes. John Wiley & Sons, (2010)
DOI: 10.1002/9781444391374

42. N. Katakami: Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. Journal of atherosclerosis and thrombosis, RV17014 (2017)

43. H. A. Hadi and J. Al Suwaidi: Endothelial dysfunction in diabetes mellitus. Vascular health and risk management, 3(6), 853 (2007)

44. R. Kawamori, Y. Yamasaki, H. Matsushima, H. Nishizawa, K. Nao, H. Hougaku, H. Maeda, N. Handa, M. Matsumoto and T. Kamada: Prevalence of Carotid Atherosclerosis in Diabetic Patients Ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes care, 15(10), 1290-1294 (1992)
DOI: 10.2337/diacare.15.10.1290

45. C. S. Hung, P. c. Lee, H. Y. Li, W. Y. Ma, M. S. Lin, J. N. Wei, S. R. Shih, C. H. Hua, L. M. Chuang and M. F. Chen: Haemoglobin A1c is associated with carotid intima-media thickness in a Chinese population. Clinical endocrinology, 75(6), 780-785 (2011)
DOI: 10.1111/j.1365-2265.2011.04129.x

46. S. W. Lee, H. C. Kim, Y.-h. Lee, B. M. Song, H. Choi, J. H. Park, Y. Rhee and C. O. Kim: Association between HbA1c and carotid atherosclerosis among elderly Koreans with normal fasting glucose. PloS one, 12(2), e0171761 (2017)
DOI: 10.1371/journal.pone.0171761

47. B. Sun, H. Zhao, X. Liu, Q. Lu, X. Zhao, J. Pu and J. Xu: Elevated hemoglobin A1c is associated with carotid plaque vulnerability: novel findings from magnetic resonance imaging study in hypertensive stroke patients. Scientific reports, 6, 33246 (2016)
DOI: 10.1038/srep33246

48. L. Saba, N. Ikeda, M. Deidda, T. Araki, F. Molinari, K. M. Meiburger, U. R. Acharya, Y. Nagashima, G. Mercuro and M. Nakano: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease. Diabetes research and clinical practice, 100(3), 348-353 (2013)
DOI: 10.1016/j.diabres.2013.03.032

49. S. E. Nissen, S. J. Nicholls, K. Wolski, R. Nesto, S. Kupfer, A. Perez, H. Jure, R. De Larochellière, C. S. Staniloae and K. Mavromatis: Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. Jama, 299(13), 1561-1573 (2008)
DOI: 10.1001/jama.299.13.1561

50. G. M. Allan, S. Garrison and J. McCormack: Comparison of cardiovascular disease risk calculators. Current opinion in lipidology, 25(4), 254-265 (2014)
DOI: 10.1097/MOL.0000000000000095

51. JBS 2: Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart, 91(suppl 5), v1 (2005)
DOI: 10.1136/hrt.2005.079988

52. J. Hippisley-Cox, C. Coupland and P. Brindle: Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ, 357, 1-12 (2017)
DOI: 10.1136/bmj.j2099

53. P. M. Ridker, N. P. Paynter, N. Rifai, J. M. Gaziano and N. R. Cook: C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation, 118(22), 2243-2251 (2008)
DOI: 10.1161/CIRCULATIONAHA.108.814251

54. W. H. Organization: WHO/ISH cardiovascular risk prediction charts. Prevention of cardiovascular disease: guideline for assessment and management of cardiovascular risk [cited 2011 May 12]. Geneva: WHO (2007)

55. G. Assmann, P. Cullen and H. Schulte: Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation, 105(3), 310-315 (2002)
DOI: 10.1161/hc0302.102575

56. P. Greenland, J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A. Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson and F. G. Kushner: 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Journal of the American College of Cardiology, 56(25), e50-e103 (2010)
DOI: 10.1016/j.jacc.2010.09.001

57. B. Wahlin, L. Innala, S. Magnusson, B. Möller, T. Smedby, S. Rantapää-Dahlqvist and S. Wållberg-Jonsson: Performance of the expanded cardiovascular risk prediction score for rheumatoid arthritis is not superior to the ACC/AHA Risk calculator. The Journal of rheumatology, 46(2), 130-137 (2019)
DOI: 10.3899/jrheum.171008

58. W. A. Davis, S. Colagiuri and T. M. Davis: Comparison of the Framingham and United Kingdom Prospective Diabetes Study cardiovascular risk equations in Australian patients with type 2 diabetes from the Fremantle Diabetes Study. Medical Journal of Australia, 190(4), 180 (2009)
DOI: 10.5694/j.1326-5377.2009.tb02343.x

59. S. H. Read, M. van Diepen, H. M. Colhoun, N. Halbesma, R. S. Lindsay, J. A. McKnight, D. A. McAllister, E. R. Pearson, J. R. Petrie, S. Philip, N. Sattar, M. Woodward and S. H. Wild: Performance of Cardiovascular Disease Risk Scores in People Diagnosed With Type 2 Diabetes: External Validation Using Data From the National Scottish Diabetes Register. Diabetes Care, 41(9), 2010 (2018)
DOI: 10.2337/dc18-0578

60. J. Hippisley-Cox, C. Coupland, Y. Vinogradova, J. Robson, R. Minhas, A. Sheikh and P. Brindle: Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. Bmj, 336(7659), 1475-1482 (2008)
DOI: 10.1136/bmj.39609.449676.25

61. H. M. M. Herath, T. P. Weerarathna and D. Umesha: Cardiovascular risk assessment in type 2 diabetes mellitus: comparison of the World Health Organization/International Society of Hypertension risk prediction charts versus UK prospective diabetes study risk engine. Vascular health and risk management, 11, 583 (2015)
DOI: 10.2147/VHRM.S90126

62. N. Garg, S. K. Muduli, A. Kapoor, S. Tewari, S. Kumar, R. Khanna and P. K. Goel: Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart Journal, 69(4), 458-463 (2017)
DOI: 10.1016/j.ihj.2017.01.015

63. M. Bansal, R. R. Kasliwal and N. Trehan: Relationship between different cardiovascular risk scores and measures of subclinical atherosclerosis in an Indian population. Indian heart journal, 67(4), 332-340 (2015)
DOI: 10.1016/j.ihj.2015.04.017

64. I. Gorostegi-Anduaga, S. Maldonado-Martín, A. MartinezAguirre-Betolaza, P. Corres, E. Romaratezabala, A. C. Whittaker, S. Francisco-Terreros and J. Pérez-Asenjo: Effects on cardiovascular risk scores and vascular age after aerobic exercise and nutritional intervention in sedentary and overweight/obese adults with primary hypertension: The EXERDIET-HTA Randomized Trial Study. High Blood Pressure & Cardiovascular Prevention, 25(4), 361-368 (2018)
DOI: 10.1007/s40292-018-0281-0

65. I. A. Kakadiaris, M. Vrigkas, A. A. Yen, T. Kuznetsova, M. Budoff and M. Naghavi: Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA. Journal of the American Heart Association, 7(22), e009476 (2018)
DOI: 10.1161/JAHA.118.009476

66. M. L. Topel, J. Shen, A. A. Morris, I. Al Mheid, S. Sher, S. B. Dunbar, V. Vaccarino, L. S. Sperling, G. H. Gibbons and G. S. Martin: Comparisons of the Framingham and pooled cohort equation risk scores for detecting subclinical vascular disease in blacks versus whites. The American journal of cardiology, 121(5), 564-569 (2018)
DOI: 10.1016/j.amjcard.2017.11.031

67. N. N. Khanna, A. D. Jamthikar, T. Araki, D. Gupta, M. Piga, L. Saba, C. Carcassi, A. Nicolaides, J. R. Laird, H. S. Suri, A. Gupta, S. Mavrogeni, G. D. Kitas and J. S. Suri: Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: A Japanese diabetes cohort study. Echocardiography, (2019)
DOI: 10.1111/echo.14242

68. A. Jamthikar, D. Gupta, N. N. Khanna, T. Araki, L. Saba, A. Nicolaides, A. Sharma, T. Omerzu, H. S. Suri and A. Gupta: A Low-Cost Machine Learning-based Cardiovascular/Stroke Risk Assessment System: Integration of Conventional Factors with Image Phenotypes. Cardiovascular Diagnosis and Therapy, (Article in Press) (2019)
DOI: 10.21037/cdt.2019.09.03

69. M. W. Lorenz, S. von Kegler, H. Steinmetz, H. S. Markus and M. Sitzer: Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke, 37(1), 87-92 (2006)
DOI: 10.1161/01.STR.0000196964.24024.ea

70. M. W. Lorenz, J. F. Polak, M. Kavousi, E. B. Mathiesen, H. Völzke, T.-P. Tuomainen, D. Sander, M. Plichart, A. L. Catapano and C. M. Robertson: Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. The Lancet, 379(9831), 2053-2062 (2012)
DOI: 10.1016/S0140-6736(12)60441-3

71. J. T. Salonen and R. Salonen: Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 11(5), 1245-1249 (1991)
DOI: 10.1161/01.ATV.11.5.1245

72. H. Øygarden: Carotid Intima-Media Thickness and Prediction of Cardiovascular Disease. Journal of the American Heart Association, 6(1), e005313
DOI: 10.1161/JAHA.116.005313

73. M. L. Bots, A. W. Hoes, P. J. Koudstaal, A. Hofman and D. E. Grobbee: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation, 96(5), 1432-1437 (1997)
DOI: 10.1161/01.CIR.96.5.1432

74. L. E. Chambless, G. Heiss, A. R. Folsom, W. Rosamond, M. Szklo, A. R. Sharrett and L. X. Clegg: Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. American journal of epidemiology, 146(6), 483-494 (1997)
DOI: 10.1093/oxfordjournals.aje.a009302

75. D. H. O'Leary, J. F. Polak, R. A. Kronmal, T. A. Manolio, G. L. Burke and S. K. Wolfson Jr: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. New England Journal of Medicine, 340(1), 14-22 (1999)
DOI: 10.1056/NEJM199901073400103

76. M. Rosvall, L. Janzon, G. Berglund, G. Engström and B. Hedblad: Incident coronary events and case fatality in relation to common carotid intima-media thickness. Journal of internal medicine, 257(5), 430-437 (2005)
DOI: 10.1111/j.1365-2796.2005.01485.x

77. J. F. Polak, M. J. Pencina, K. M. Pencina, C. J. O'Donnell, P. A. Wolf and R. B. D'Agostino, Sr.: Carotid-wall intima-media thickness and cardiovascular events. The New England journal of medicine, 365(3), 213-221 (2011)
DOI: 10.1056/NEJMoa1012592

78. J. F. Polak, M. J. Pencina, D. H. O'leary and R. B. D'agostino: Common carotid artery intima-media thickness progression as a predictor of stroke in multi-ethnic study of atherosclerosis. Stroke, STROKEAHA. 111.625186 (2011)

79. H. M. Den Ruijter, S. A. Peters, T. J. Anderson, A. R. Britton, J. M. Dekker, M. J. Eijkemans, G. Engstrom, G. W. Evans, J. de Graaf, D. E. Grobbee, B. Hedblad, A. Hofman, S. Holewijn, A. Ikeda, M. Kavousi, K. Kitagawa, A. Kitamura, H. Koffijberg, E. M. Lonn, M. W. Lorenz, E. B. Mathiesen, G. Nijpels, S. Okazaki, D. H. O'Leary, J. F. Polak, J. F. Price, C. Robertson, C. M. Rembold, M. Rosvall, T. Rundek, J. T. Salonen, M. Sitzer, C. D. Stehouwer, J. C. Witteman, K. G. Moons and M. L. Bots: Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA, 308(8), 796-803 (2012)
DOI: 10.1001/jama.2012.9630

80. H. M. den Ruijter, S. Peters, K. Groenewegen, T. Anderson, A. Britton, J. Dekker, G. Engström, M. Eijkemans, G. Evans and J. de Graaf: Common carotid intima-media thickness does not add to Framingham risk score in individuals with diabetes mellitus: the USE-IMT initiative. Diabetologia, 56(7), 1494-1502 (2013)
DOI: 10.1007/s00125-013-2898-9

81. M. L. Bots, K. A. Groenewegen, T. J. Anderson, A. R. Britton, J. M. Dekker, G. Engström, G. W. Evans, J. De Graaf, D. E. Grobbee and B. Hedblad: Common carotid intima-media thickness measurements do not improve cardiovascular risk prediction in individuals with elevated blood pressure: the USE-IMT collaboration. Hypertension, HYPERTENSIONAHA. 113.02683 (2014)

82. D. H. O'Leary and M. L. Bots: Imaging of atherosclerosis: carotid intima-media thickness. European heart journal, 31(14), 1682-1689 (2010)
DOI: 10.1093/eurheartj/ehq185

83. J. D. Spence, M. Eliasziw, M. DiCicco, D. G. Hackam, R. Galil and T. Lohmann: Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke, 33(12), 2916-2922 (2002)
DOI: 10.1161/01.STR.0000042207.16156.B9

84. V. Nambi, L. Chambless, A. R. Folsom, M. He, Y. Hu, T. Mosley, K. Volcik, E. Boerwinkle and C. M. Ballantyne: Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. Journal of the American College of Cardiology, 55(15), 1600-1607 (2010)
DOI: 10.1016/j.jacc.2009.11.075

85. J. H. Stein and H. M. Johnson: Carotid intima-media thickness, plaques, and cardiovascular disease risk: implications for preventive cardiology guidelines. In: Journal of the American College of Cardiology, (2010)
DOI: 10.1016/j.jacc.2009.11.073

86. E. J. Lee, H. Kim, J. Bae, J. Kim, H. Han, C. Park, N. H. Park, M. Kim and J. Ryu: Relevance of common carotid intima-media thickness and carotid plaque as risk factors for ischemic stroke in patients with type 2 diabetes mellitus. American journal of neuroradiology, 28(5), 916-919 (2007)

87. M. L. Bots and K. Sutton-Tyrrell: Lessons from the past and promises for the future for carotid intima-media thickness. Journal of the American College of Cardiology, 60(17), 1599-1604 (2012)
DOI: 10.1016/j.jacc.2011.12.061

88. H. N. Hodis, W. J. Mack, L. LaBree, R. H. Selzer, C.-r. Liu, C.-h. Liu and S. P. Azen: The role of carotid arterial intima-media thickness in predicting clinical coronary events. Annals of internal medicine, 128(4), 262-269 (1998)
DOI: 10.7326/0003-4819-128-4-199802150-00002

89. M. L. Bots, G. W. Evans, C. H. Tegeler and R. Meijer: Carotid intima-media thickness measurements: relations with atherosclerosis, risk of cardiovascular disease and application in randomized controlled trials. Chinese medical journal, 129(2), 215 (2016)
DOI: 10.4103/0366-6999.173500

90. A. de la Sierra, J. L. Zamorano and L. M. Ruilope: Application of hypertension guidelines in clinical practice: implementation of the 2007 ESH/ESC European practice Guidelines in Spain. Journal of Hypertension, 27, S27-S32 (2009)
DOI: 10.1097/01.hjh.0000356769.32130.95

91. S. M. Grundy, D. Bilheimer, A. Chait, L. T. Clark, M. Denke, R. J. Havel, W. R. Hazzard, S. B. Hulley, D. B. Hunninghake and R. A. Kreisberg: Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). Jama, 269(23), 3015-3023 (1993)
DOI: 10.1001/jama.1993.03500230097036

92. J. H. Stein and M. C. Tattersall: Carotid intima-media thickness and cardiovascular disease risk prediction. Journal of the American College of Cardiology, 63(21), 2301-2302 (2014)
DOI: 10.1016/j.jacc.2014.02.528

93. M. Rodrigues: Clinical impact of Intima-Media Thickness measurement (2014)
DOI: 10.21035/ijcnmh.2014.1(Suppl.1).S05

94. L. E. Chambless, A. R. Folsom, L. X. Clegg, A. R. Sharrett, E. Shahar, F. J. Nieto, W. D. Rosamond and G. Evans: Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol, 151(5), 478-87 (2000)
DOI: 10.1093/oxfordjournals.aje.a010233

95. F. Molinari, C. S. Pattichis, G. Zeng, L. Saba, U. R. Acharya, R. Sanfilippo, A. Nicolaides and J. S. Suri: Completely automated multiresolution edge snapper-a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database. IEEE Transactions on image processing, 21(3), 1211-1222 (2012)
DOI: 10.1109/TIP.2011.2169270

96. F. Molinari, G. Zeng and J. S. Suri: A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Computer methods and programs in biomedicine, 100(3), 201-221 (2010)
DOI: 10.1016/j.cmpb.2010.04.007

97. F. Molinari, G. Zeng and J. S. Suri: Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(5), 1112-1124 (2010)
DOI: 10.1109/TUFFC.2010.1522

98. F. Molinari, K. M. Meiburger, G. Zeng, L. Saba, U. Rajendra Acharya, L. Famiglietti, N. Georgiou, A. Nicolaides, R. Sriswan Mamidi, H. Kuper and J. S. Suri: Automated carotid IMT measurement and its validation in low contrast ultrasound database of 885 patient Indian population epidemiological study: results of AtheroEdge™ Software. International angiology : a journal of the International Union of Angiology, 31(1), 42-53 (2012)
DOI: 10.1007/978-1-4614-7425-8_17

99. L. Saba, F. Molinari, K. Meiburger, M. Piga, G. Zeng, U. A. Rajendra, A. Nicolaides and J. Suri: What is the correct distance measurement metric when measuring carotid ultrasound intima-media thickness automatically? International angiology: a journal of the International Union of Angiology, 31(5), 483-489 (2012)
DOI: 10.7863/jum.2012.31.7.1123

100. F. Molinari, K. M. Meiburger, L. Saba, U. R. Acharya, L. Famiglietti, N. Georgiou, A. Nicolaides, R. S. Mamidi, H. Kuper and J. S. Suri: Automated Carotid IMT Measurement and Its Validation in Low Contrast Ultrasound Database of 885 Patient Indian Population Epidemiological Study: Results of AtheroEdge® Software. In: Multi-Modality Atherosclerosis Imaging and Diagnosis. Springer, (2014)
DOI: 10.1007/978-1-4614-7425-8_17

101. E. Cuadrado-Godia, S. K. Srivastava, L. Saba, T. Araki, H. S. Suri, A. Giannopolulos, T. Omerzu, J. Laird, N. N. Khanna, S. Mavrogeni, G. D. Kitas, A. Nicolaides and J. S. Suri: Geometric Total Plaque Area Is an Equally Powerful Phenotype Compared With Carotid Intima-Media Thickness for Stroke Risk Assessment: A Deep Learning Approach. Journal for Vascular Ultrasound, (2018)
DOI: 10.1177/1544316718806421

102. L. Saba, G. Mallarini, R. Sanfilippo, G. Zeng, R. Montisci and J. Suri: Intima Media Thickness Variability (IMTV) and its association with cerebrovascular events: a novel marker of carotid atherosclerosis? Cardiovascular diagnosis and therapy, 2(1), 10 (2012)

103. N. Ikeda, N. Kogame, R. Iijima, M. Nakamura and K. Sugi: Impact of carotid artery ultrasound and ankle-brachial index on prediction of severity of SYNTAX score. Circulation Journal, 77(3), 712-716 (2013)
DOI: 10.1253/circj.CJ-12-1087

104. N. Ikeda, A. Gupta, N. Dey, S. Bose, S. Shafique, T. Arak, E. C. Godia, L. Saba, J. R. Laird and A. Nicolaides: Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement. Ultrasound in medicine & biology, 41(5), 1247-1262 (2015)
DOI: 10.1016/j.ultrasmedbio.2014.12.024

105. N. Ikeda, N. Dey, A. Sharma, A. Gupta, S. Bose, S. Acharjee, S. Shafique, E. Cuadrado-Godia, T. Araki, L. Saba, J. R. Laird, A. Nicolaides and J. S. Suri: Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: Stroke risk assessment. Comput Methods Programs Biomed, 141, 73-81 (2017)
DOI: 10.1016/j.cmpb.2017.01.009

106. N. Ikeda, T. Araki, K. Sugi, M. Nakamura, M. Deidda, F. Molinari, K. M. Meiburger, U. R. Acharya, L. Saba and P. P. Bassareo: Ankle-brachial index and its link to automated carotid ultrasound measurement of intima-media thickness variability in 500 Japanese coronary artery disease patients. Current atherosclerosis reports, 16(3), 393 (2014)
DOI: 10.1007/s11883-013-0393-x

107. E. Cuadrado-Godia, A. D. Jamthikar, D. Gupta, N. N. Khanna, T. Araki, M. Maniruzzaman, L. Saba, A. Nicolaides, A. Sharma and T. Omerzu: Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design: Logistic regression approach. Computers in Biology and Medicine (2019)
DOI: 10.1016/j.compbiomed.2019.03.020

108. Assessment With CCTA and MRI in Asymptomatic Patients With Type 2 Diabetes for Detection of Unrecognized Myocardial Scar in Subclinical Coronary Atherosclerosis -NCT01254552. In: U. S. National Library of Medicine-Clinical Trial. (2019)
DOI: clinicaltrials.gov/ct2/show/NCT01254552

109. P. Lacroix, V. Aboyans, M. Criqui, F. Bertin, T. Bouhamed, F. Archambeaud and M. Laskar: Type-2 diabetes and carotid stenosis: a proposal for a screening strategy in asymptomatic patients. Vascular medicine, 11(2), 93-99 (2006)
DOI: 10.1191/1358863x06vm677oa

110. A. H. Kao, A. Lertratanakul, J. R. Elliott, A. Sattar, L. Santelices, P. Shaw, M. Birru, Z. Avram, T. Thompson and K. Sutton-Tyrrell: Relation of carotid intima-media thickness and plaque with incident cardiovascular events in women with systemic lupus erythematosus. The American journal of cardiology, 112(7), 1025-1032 (2013)
DOI: 10.1016/j.amjcard.2013.05.040

111. S. E. Elias-Smale, M. Kavousi, G. C. Verwoert, M. T. Koller, E. W. Steyerberg, F. U. Mattace-Raso, A. Hofman, A. P. Hoeks, R. S. Reneman and J. C. Witteman: Common carotid intima-media thickness in cardiovascular risk stratification of older people: the Rotterdam Study. European journal of preventive cardiology, 19(4), 698-705 (2012)
DOI: 10.1177/1741826711414623

112. M. Draman, H. Thabit, T. Kiernan, J. O'Neill, S. Sreenan and J. McDermott: A silent myocardial infarction in the diabetes outpatient clinic: case report and review of the literature. Endocrinology, diabetes & metabolism case reports, 2013(1) (2013)
DOI: 10.1530/EDM-13-0058

113. R. Acharya, S. M. Krishnan, J. A. Spaan and J. S. Suri: Advances in cardiac signal processing. Springer, (2007)
DOI: 10.1007/978-3-540-36675-1

114. P. Henry, S. Makowski, P. Richard, F. Beverelli, S. Casanova, A. Louali, K. Boughalem, S. Battaglia, L. Guize and J.-L. Guermonprez: Increased incidence of moderate stenosis among patients with diabetes: substrate for myocardial infarction? American heart journal, 134(6), 1037-1043 (1997)
DOI: 10.1016/S0002-8703(97)70023-1

115. E. Picano and M. Paterni: Ultrasound tissue characterization of vulnerable atherosclerotic plaque. International journal of molecular sciences, 16(5), 10121-10133 (2015)
DOI: 10.3390/ijms160510121

116. P. K. Kumar, T. Araki, J. Rajan, L. Saba, F. Lavra, N. Ikeda, A. M. Sharma, S. Shafique, A. Nicolaides and J. R. Laird: Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach. Medical & biological engineering & computing, 55(8), 1415-1434 (2017)
DOI: 10.1007/s11517-016-1601-y

117. T. Araki, P. K. Kumar, H. S. Suri, N. Ikeda, A. Gupta, L. Saba, J. Rajan, F. Lavra, A. M. Sharma and S. Shafique: Two automated techniques for carotid lumen diameter measurement: regional versus boundary approaches. Journal of medical systems, 40(7), 182 (2016)
DOI: 10.1007/s10916-016-0543-0

118. T. Araki, A. M. Kumar, P. Krishna Kumar, A. Gupta, L. Saba, J. Rajan, F. Lavra, A. M. Sharma, S. Shafique and A. Nicolaides: Ultrasound-based automated carotid lumen diameter/stenosis measurement and its validation system. Journal for Vascular Ultrasound, 40(3), 120-134 (2016)
DOI: 10.1177/154431671604000302

119. K. M. Meiburger, F. Molinari, G. Zeng, L. Saba and J. S. Suri: Carotid automated ultrasound double line extraction system (CADLES) via Edge-Flow. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, (2011)
DOI: 10.1109/IEMBS.2011.6090107

120. F. Molinari, G. Zeng and J. S. Suri: Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. In: Atherosclerosis Disease Management. Springer, (2011)
DOI: 10.1007/978-1-4419-7222-4_10

121. F. Molinari, G. Zeng and J. S. Suri: Greedy technique and its validation for fusion of two segmentation paradigms leads to an accurate intima-media thickness measure in plaque carotid arterial ultrasound. Journal for Vascular Ultrasound, 34(2), 63-73 (2010)
DOI: 10.1177/154431671003400201

122. F. Molinari, K. M. Meiburger, L. Saba, U. R. Acharya, M. Ledda, A. Nicolaides and J. S. Suri: Constrained snake vs. conventional snake for carotid ultrasound automated IMT measurements on multi-center data sets. Ultrasonics, 52(7), 949-961 (2012)
DOI: 10.1016/j.ultras.2012.03.005

123. L. Saba, T. Araki, P. Krishna Kumar, J. Rajan, F. Lavra, N. Ikeda, A. M. Sharma, S. Shafique, A. Nicolaides and J. R. Laird: Carotid inter-adventitial diameter is more strongly related to plaque score than lumen diameter: An automated tool for stroke analysis. Journal of Clinical Ultrasound, 44(4), 210-220 (2016)
DOI: 10.1002/jcu.22334

124. L. Saba, S. K. Banchhor, T. Araki, K. Viskovic, N. D. Londhe, J. R. Laird, H. S. Suri and J. S. Suri: Intra-and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement. Indian Heart Journal (2018)
DOI: 10.7860/JCDR/2018/34311.11217

125. M. Silvestrini, C. Altamura, R. Cerqua, P. Pasqualetti, G. Viticchi, L. Provinciali, L. Paulon and F. Vernieri: Ultrasonographic markers of vascular risk in patients with asymptomatic carotid stenosis. Journal of Cerebral Blood Flow & Metabolism, 33(4), 619-624 (2013)
DOI: 10.1038/jcbfm.2013.5

126. V. Kotsis, A. D. Jamthikar, T. Araki, D. Gupta, J. R. Laird, A. A. Giannopoulos, L. Saba, H. S. Suri, S. Mavrogeni, G. D. Kitas, K. Viskovic, N. N. Khanna, A. Gupta, A. Nicolaides and J. S. Suri: Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients. Diabetes Research and Clinical Practice, 143, 322-331 (2018)
DOI: 10.1016/j.diabres.2018.07.028

127. A. Gupta, K. Kesavabhotla, H. Baradaran, H. Kamel, A. Pandya, A. E. Giambrone, D. Wright, K. J. Pain, E. E. Mtui and J. S. Suri: Plaque echolucency and stroke risk in asymptomatic carotid stenosis: a systematic review and meta-analysis. Stroke, 46(1), 91-97 (2015)
DOI: 10.1161/STROKEAHA.114.006091

128. E. B. Mathiesen, K. H. Bønaa and O. Joakimsen: Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: the Tromsø study. Circulation, 103(17), 2171-2175 (2001)
DOI: 10.1161/01.CIR.103.17.2171

129. L. Saba, S. K. Banchhor, H. S. Suri, N. D. Londhe, T. Araki, N. Ikeda, K. Viskovic, S. Shafique, J. R. Laird and A. Gupta: Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: A web-based point-of-care tool for multicenter clinical trial. Computers in biology and medicine, 75, 217-234 (2016)
DOI: 10.1016/j.compbiomed.2016.06.010

130. E. Castelblanco, À. Betriu, M. Hernández, M. Granado-Casas, E. Ortega, B. Soldevila, A. Ramírez-Morros, J. Franch-Nadal, M. Puig-Domingo and E. Fernández: Ultrasound Tissue Characterization of Carotid Plaques Differs Between Patients with Type 1 Diabetes and Subjects without Diabetes. Journal of clinical medicine, 8(4), 424 (2019)
DOI: 10.3390/jcm8040424

131. J. F. Polak, L. Shemanski, D. H. O'Leary, D. Lefkowitz, T. R. Price, P. J. Savage, W. E. Brant and C. Reid: Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Cardiovascular Health Study. Radiology, 208(3), 649-654 (1998)
DOI: 10.1148/radiology.208.3.9722841

132. L. M. Pedro, J. M. Sanches, J. Seabra, J. S. Suri and J. Fernandes e Fernandes: Asymptomatic carotid disease-a new tool for assessing neurological risk. Echocardiography, 31(3), 353-361 (2014)
DOI: 10.1111/echo.12348

133. T. Araki, P. K. Jain, H. S. Suri, N. D. Londhe, N. Ikeda, A. El-Baz, V. K. Shrivastava, L. Saba, A. Nicolaides and S. Shafique: Stroke risk stratification and its validation using ultrasonic Echolucent Carotid Wall plaque morphology: a machine learning paradigm. Computers in biology and medicine, 80, 77-96 (2017)
DOI: 10.1016/j.compbiomed.2016.11.011

134. T. Araki, N. Ikeda, D. Shukla, N. D. Londhe, V. K. Shrivastava, S. K. Banchhor, L. Saba, A. Nicolaides, S. Shafique and J. R. Laird: A new method for IVUS-based coronary artery disease risk stratification: a link between coronary & carotid ultrasound plaque burdens. Computer methods and programs in biomedicine, 124, 161-179 (2016)
DOI: 10.1016/j.cmpb.2015.10.022

135. T. Araki, N. Ikeda, D. Shukla, P. K. Jain, N. D. Londhe, V. K. Shrivastava, S. K. Banchhor, L. Saba, A. Nicolaides and S. Shafique: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology. Computer methods and programs in biomedicine, 128, 137-158 (2016)
DOI: 10.1016/j.cmpb.2016.02.004

136. L. Saba, P. K. Jain, H. S. Suri, N. Ikeda, T. Araki, B. K. Singh, A. Nicolaides, S. Shafique, A. Gupta and J. R. Laird: Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm. Journal of Medical Systems, 41(6), 98 (2017)
DOI: 10.1007/s10916-017-0745-0

137. N. Katakami, M. Takahara, H. Kaneto, K. y. Sakamoto, K. Yoshiuchi, Y. Irie, F. Kubo, T. Katsura, Y. Yamasaki and K. Kosugi: Ultrasonic tissue characterization of carotid plaque improves the prediction of cardiovascular events in diabetic patients: a pilot study. Diabetes Care, 35(12), 2640-2646 (2012)
DOI: 10.2337/dc12-0331

138. R. U. Acharya, O. Faust, A. P. C. Alvin, S. V. Sree, F. Molinari, L. Saba, A. Nicolaides and J. S. Suri: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. Journal of medical systems, 36(3), 1861-1871 (2012)
DOI: 10.1007/s10916-010-9645-2

139. J. Seabra, L. M. Pedro, J. F. e Fernandes and J. Sanches: Ultrasonographic characterization and identification of symptomatic carotid plaques. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, (2010)
DOI: 10.1109/IEMBS.2010.5627811

140. U. R. Acharya, S. V. Sree, M. M. R. Krishnan, F. Molinari, L. Saba, S. Y. S. Ho, A. T. Ahuja, S. C. Ho, A. Nicolaides and J. S. Suri: Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound in Medicine and Biology, 38(6), 899-915 (2012)
DOI: 10.1016/j.ultrasmedbio.2012.01.015

141. C. P. Loizou, T. Kasparis, C. Spyrou and M. Pantziaris: Integrated system for the complete segmentation of the common carotid artery bifurcation in ultrasound images. In: IFIP International Conference on Artificial Intelligence Applications and Innovations. Springer, (2013)
DOI: 10.1007/978-3-642-41142-7_30

142. J. S. Suri, K. Liu, S. Singh, S. N. Laxminarayan, X. Zeng and L. Reden: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Transactions on information technology in biomedicine, 6(1), 8-28 (2002)
DOI: 10.1109/4233.992158

143. J. S. Suri: Imaging based symptomatic classification and cardiovascular stroke risk score estimation. In: Google Patents, (2011)

144. U. R. Acharya, S. V. Sree, R. Ribeiro, G. Krishnamurthi, R. T. Marinho, J. Sanches and J. S. Suri: Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Medical physics, 39(7Part1), 4255-4264 (2012)
DOI: 10.1118/1.4725759

145. U. R. Acharya, O. Faust, S. V. Sree, A. P. C. Alvin, G. Krishnamurthi, J. Sanches and J. S. Suri: Atheromatic™: Symptomatic vs. asymptomatic classification of carotid ultrasound plaque using a combination of HOS, DWT & texture. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, (2011)
DOI: 10.1109/IEMBS.2011.6091113

146. U. R. Acharya, F. Molinari, L. Saba, A. Nicolaides, S. Shafique and J. S. Suri: Carotid ultrasound symptomatology using atherosclerotic plaque characterization: a class of Atheromatic systems. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, (2012)
DOI: 10.1109/EMBC.2012.6346645

147. U. R. Acharya, O. Faust, A. Alvin, G. Krishnamurthi, J. C. Seabra, J. Sanches and J. S. Suri: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. Computer methods and programs in biomedicine, 110(1), 66-75 (2013)
DOI: 10.1016/j.cmpb.2012.09.008

148. U. R. Acharya, M. R. K. Mookiah, S. V. Sree, D. Afonso, J. Sanches, S. Shafique, A. Nicolaides, L. M. Pedro, J. F. e Fernandes and J. S. Suri: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment. Medical & biological engineering & computing, 51(5), 513-523 (2013)
DOI: 10.1007/s11517-012-1019-0

149. M. Biswas, V. Kuppili, L. Saba, D. R. Edla, H. S. Suri, A. Sharma, E. Cuadrado-Godia, J. R. Laird, A. Nicolaides and J. S. Suri: Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk. Medical & biological engineering & computing, 57(2), 543-564 (2019)
DOI: 10.1007/s11517-018-1897-x

150. M. Biswas, V. Kuppili, L. Saba, D. R. Edla, H. S. Suri, E. Cuadrado-Godia, J. R. Laird, R. T. Marinhoe, J. M. Sanches and A. Nicolaides: State-of-the-art review on deep learning in medical imaging. Frontiers in bioscience (Landmark edition), 24, 392-426 (2019)
DOI: 10.2741/4725

151. E. M. Obradors, A. E. Devesa, E. J. Salas, M. V. Ciordia and J. L. López: Oral manifestations of Diabetes Mellitus: a systematic review. Medicina oral, patología oral y cirugía bucal. Ed. inglesa, 22(5), 10 (2017)

152. S. U. Kamath and S. S. Kamath: Musculoskeletal manifestations in diabetes mellitus. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(2), 1548-1552 (2016)

153. A. Del Rosso, M. M. Cerinic, F. De Giorgio, C. Minari, C. M. Rotella and G. Seghieri: Rheumatological manifestations in diabetes mellitus. Curr Diabetes Rev, 2(4), 455-66 (2006)
DOI: 10.2174/1573399810602040455

154. K. S. Stamatelopoulos, G. D. Kitas, C. M. Papamichael, E. Chryssohoou, K. Kyrkou, G. Georgiopoulos, A. Protogerou, V. F. Panoulas, A. Sandoo, N. Tentolouris, M. Mavrikakis and P. P. Sfikakis: Atherosclerosis in rheumatoid arthritis versus diabetes: a comparative study. Arterioscler Thromb Vasc Biol, 29(10), 1702-8 (2009)
DOI: 10.1161/ATVBAHA.109.190108

155. M. T. Nurmohamed and G. Kitas: Cardiovascular risk in rheumatoid arthritis and diabetes: how does it compare and when does it start? In: BMJ Publishing Group Ltd, (2011)
DOI: 10.1136/ard.2010.145839

156. T. J. Orchard, Y.-F. Chang, R. E. Ferrell, N. Petro and D. E. Ellis: Nephropathy in type 1 diabetes: A manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney international, 62(3), 963-970 (2002)
DOI: 10.1046/j.1523-1755.2002.00507.x

157. S. M. Grundy, I. J. Benjamin, G. L. Burke, A. Chait, R. H. Eckel, B. V. Howard, W. Mitch, S. C. Smith Jr and J. R. Sowers: Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation, 100(10), 1134-1146 (1999)
DOI: 10.1161/01.CIR.100.10.1134

158. C. Dong, D. Della-Morte, D. Cabral, L. Wang, S. H. Blanton, C. Seemant, R. L. Sacco and T. Rundek: Sirtuin/uncoupling protein gene variants and carotid plaque area and morphology. International Journal of Stroke, 10(8), 1247-1252 (2015)
DOI: 10.1111/ijs.12623

159. S. Carbone, D. L. Dixon, L. F. Buckley and A. Abbate: Glucose-lowering therapies for cardiovascular risk reduction in type 2 diabetes mellitus: state-of-the-art review. In: Mayo Clinic Proceedings. Elsevier, (2018)
DOI: 10.1016/j.mayocp.2018.07.018

160. B. Zinman, C. Wanner, J. M. Lachin, D. Fitchett, E. Bluhmki, S. Hantel, M. Mattheus, T. Devins, O. E. Johansen and H. J. Woerle: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine, 373(22), 2117-2128 (2015)
DOI: 10.1056/NEJMoa1504720

161. S. P. Marso, G. H. Daniels, K. Brown-Frandsen, P. Kristensen, J. F. Mann, M. A. Nauck, S. E. Nissen, S. Pocock, N. R. Poulter and L. S. Ravn: Liraglutide and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 375(4), 311-322 (2016)
DOI: 10.1056/NEJMoa1603827

162. D. H. Fitchett: Empagliflozin and Cardio-renal Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease-Implications for Clinical Practice. European Endocrinology, 14(2), 40 (2018)
DOI: 10.17925/EE.2018.14.2.40

163. B. Neal, V. Perkovic, K. W. Mahaffey, D. De Zeeuw, G. Fulcher, N. Erondu, W. Shaw, G. Law, M. Desai and D. R. Matthews: Canagliflozin and cardiovascular and renal events in type 2 diabetes. New England Journal of Medicine, 377(7), 644-657 (2017)
DOI: 10.1056/NEJMoa1611925

164. S. B. Malham and A. C. Goldberg: Cardiovascular risk reduction: the future of cholesterol lowering drugs. Current opinion in pharmacology, 27, 62-69 (2016)
DOI: 10.1016/j.coph.2016.01.007

165. D. L. Dixon, L. G. Pamulapati, J. D. Bucheit, E. M. Sisson, S. R. Smith, C. J. Kim, G. F. Wohlford and J. Pozen: Recent Updates on the Use of PCSK9 Inhibitors in Patients with Atherosclerotic Cardiovascular Disease. Current atherosclerosis reports, 21(5), 16 (2019)
DOI: 10.1007/s11883-019-0778-6

166. M. Kyhlbäck, A. Söderlund, T. Thierfelder and G. Elmgren Frykberg: Physiotherapy treatment of the diabetic shoulder: health-related quality of life and measures of shoulder function regarding patients with type 1 diabetes. Disability and rehabilitation, 41(12), 1435-1442 (2019)
DOI: 10.1080/09638288.2018.1430177

167. C. S. Fox, S. H. Golden, C. Anderson, G. A. Bray, L. E. Burke, I. H. De Boer, P. Deedwania, R. H. Eckel, A. G. Ershow and J. Fradkin: Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation, 132(8), 691-718 (2015)
DOI: 10.1161/CIR.0000000000000230

168. C. Tonoli, E. Heyman, B. Roelands, L. Buyse, M. Piacentini, N. Pattyn, S. Berthoin and R. Meeusen: Effects of Different Types of Exercise on the Cognitive Function in Type 1 Diabetes. Medicine & Science in Sports & Exercise, 46(5S) (2014)
DOI: 10.1249/01.mss.0000495100.01198.dc

169. F. Garcia-Garcia, K. Kumareswaran, R. Hovorka and M. E. Hernando: Quantifying the acute changes in glucose with exercise in type 1 diabetes: a systematic review and meta-analysis. Sports medicine, 45(4), 587-599 (2015)
DOI: 10.1007/s40279-015-0302-2

170. S. Fenkci, A. Sarsan, S. Rota and F. Ardic: Effects of resistance or aerobic exercises on metabolic parameters in obese women who are not on a diet. Advances in therapy, 23(3), 404-413 (2006)
DOI: 10.1007/BF02850161

171. R. Yadav, R. K. Yadav, K. Sarvottam and R. Netam: Framingham risk score and estimated 10-year cardiovascular disease risk reduction by a short-term yoga-based lifeStyle intervention. The Journal of Alternative and Complementary Medicine, 23(9), 730-737 (2017)
DOI: 10.1089/acm.2016.0309

172. L. Saba, K. M. Meiburger, F. Molinari, G. Ledda, M. Anzidei, U. R. Acharya, G. Zeng, S. Shafique, A. Nicolaides and J. S. Suri: Carotid IMT variability (IMTV) and its validation in symptomatic versus asymptomatic Italian population: can this be a useful index for studying symptomaticity? Echocardiography, 29(9), 1111-1119 (2012)
DOI: 10.1111/j.1540-8175.2012.01763.x

173. S. A. Riccio, A. A. House, J. D. Spence, A. Fenster and G. Parraga: Carotid ultrasound phenotypes in vulnerable populations. Cardiovascular ultrasound, 4(1), 44 (2006)
DOI: 10.1186/1476-7120-4-44

174. M. Abdallah, R. Raza, T. Abdallah, D. McCord and G. Khoueiry: A rare case of silent transmural myocardial infarction with diffuse ST elevations complicated by concomitant severe hyperkalemia. Heart & Lung: The Journal of Acute and Critical Care, 43(4), 286-288 (2014)
DOI: 10.1016/j.hrtlng.2014.04.017

175. K. L. Anderson, N. A. Shah, M. Gallegos and I.-H. Chiang: Asymptomatic ST elevation myocardial infarction. Heart & Lung, 47(4), 363-365 (2018)
DOI: 10.1016/j.hrtlng.2018.04.012

176. Business Today: India's per-capita income rises 10% to Rs 10,534 a month in FY19. In: Business Today, India, New Delhi (2019)

177. S. Grover, A. Avasthi, A. Bhansali, S. Chakrabarti and P. Kulhara: Cost of ambulatory care of diabetes mellitus: a study from north India. Postgraduate medical journal, 81(956), 391-395 (2005)
DOI: 10.1136/pgmj.2004.024299

178. B. Bansode and S. Jungari: Economic burden of diabetic patients in India: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews (2019)
DOI: 10.1016/j.dsx.2019.06.020

179. V. Mohan, S. N. Shah, S. R. Joshi, V. Seshiah, B. K. Sahay, S. Banerjee, S. K. Wangnoo, A. Kumar, S. Kalra and A. Unnikrishnan: Current status of management, control, complications and psychosocial aspects of patients with diabetes in India: Results from the DiabCare India 2011 Study. Indian journal of endocrinology and metabolism, 18(3), 370 (2014)
DOI: 10.4103/2230-8210.129715

180. Life Expectancy by NITI Ayog Government of India. In,

181. Y. M. Kang, Y. K. Cho, S. E. Lee, J.-Y. Park, W. J. Lee, Y.-J. Kim and C. H. Jung: Cardiovascular diseases and life expectancy in adults with type 2 diabetes: A Korean national sample cohort study. The Journal of Clinical Endocrinology & Metabolism, 102(9), 3443-3451 (2017)
DOI: 10.1210/jc.2017-00643

182. R. Kotabagi, V. Apte and P. Pathak: Post mortem diagnosis of early myocardial infarction. Medical Journal Armed Forces India, 56(2), 99-102 (2000)
DOI: 10.1016/S0377-1237(17)30121-1

183. S. Pohjola, P. Siltanen and M. Romo: Five-year survival of 728 patients after myocardial infarction. A community study. Heart, 43(2), 176-183 (1980)
DOI: 10.1136/hrt.43.2.176

184. J. S. Suri, A. Dowling, S. Laxminarayan and S. Singh: Economic impact of telemedicine: a survey. Stud Health Technol Inform, 114, 140-56 (2005)

185. M. E. Makover and S. Ebrahim: What is the best strategy for reducing deaths from heart disease? PLoS medicine, 2(4), e98 (2005)
DOI: 10.1371/journal.pmed.0020098

186. S. Akari, U. V. Mateti and B. R. Kunduru: Health-care cost of diabetes in South India: A cost of illness study. Journal of research in pharmacy practice, 2(3), 114 (2013)
DOI: 10.4103/2279-042X.122382

187. P. Rayappa, K. Raju, A. Kapur, S. Bjork, C. Sylvest and K. D. Kumar: Economic cost of diabetes care: the Bangalore urban district diabetes study. Int J Diab Dev Countries, 19(3), 87-6 (1999)

188. R. Shobhana, P. R. Rao, A. Lavanya, R. Williams, C. Padma, V. Vijay and A. Ramachandran: Costs incurred by families having Type 1 diabetes in a developing country-a study from Southern India. Diabetes Research and Clinical Practice, 55(1), 45-48 (2002)
DOI: 10.1016/S0168-8227(01)00276-5

189. S. D. Fernandes and S. D. Fernandes: Economic burden of diabetes mellitus and its socio-economic impact on household expenditure in an urban slum area. Int J Res Med Sci, 5(5), 1808-13 (2017)
DOI: 10.18203/2320-6012.ijrms20171585

Abbreviations: ABI Ankle-Brachial Index, ACC American College of Cardiology, ADA American Diabetes Association, AGEs Advanced Glycation End Products, AHA American Heart Association, AUC Area Under Curve, BMI Body Mass Index , BP Blood Pressure, CAD Coronary Artery Disease, CCTA Cardiac Computed Tomography Angiography, CKD Chronic Kidney Disease, CVD Cardiovascular Disease, CCVRF Conventional Cardiovascular Risk Factor, DWT Discrete Wavelet Transform, eNOS Endothelial Nitric Oxide Synthase, ERK5 Extracellular Signal-Regulated Kinase 5, IAD Inter-Adventitial Diameter, ICA Internal Carotid Artery, IDF International Diabetes Federation, MI Myocardial Infarction, PWV Pulse Wave Velocity, SMC Smooth Muscle Cell, STEMI ST-Elevation Myocardial Infarction, SUMO Small Ubiquitin-Like Modifier, T2DM Type-2 Diabetes Mellitus, WHO World Health Organization, SMI Silent Myocardial Infraction, CVE Cardiovascular events, ASCVD Atherosclerotic Cardiovascular Disease, AECRS1.0 AtheroEdgeTM Composite Risk Score 1.0, FRS Framingham Risk Score, NIPPON Based on the NIPPON DATA80, PROCAM Prospective Cardiovascular Münster, RRS Reynolds Risk Score, SCORE Systematic Coronary Risk Evaluation, UKPDS United Kingdom Prospective Diabetes Study, WHO World Health Organization, IMT Intima-Media Thickness, cIMT Carotid IMT, IMTV IMT Variability, IMTavg. Average IMT, IMTmin Minimum IMT, IMTmax. Maximum IMT, LD Lumen Diameter, TPA Total Plaque Area, mTPA Morphological-TPA, gTPA Geometrical-TPA

Key Words: Diabetes, Atherosclerosis, ACC guideline, AHA guideline, Conventional Risk Calculator, 10-year risk assessment, Stroke, Cardiovascular, And Image Phenotypes

Send correspondence to: Jasjit S. Suri, AtheroPoint™, Roseville, Roseville, CA 95661, USA, Tel: 916-749-5628, Fax: 916-749-4942, E-mail: jsuri@comcast.net