[Frontiers in Bioscience, Landmark, 25, 1058-1109, March 1, 2020]

Epigenetic alterations in cancer

Suganya Ilango1, Biswaranjan Paital2, Priyanka Jayachandran1, Palghat Raghunathan Padma1, Ramalingam Nirmaladevi1

1Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India, 2Redox Regulation Laboratory, Department of Zoology, CBSH, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Importance of epigenetics in cancers
4. Biological basis of cancer
    4.1. Epigenetic mechanisms in normal cells
    4.2. Epigenetic mechanisms in cancer cells
    4.3. Epigenetics of cancer in relation to aging
5. DNA methylation
    5.1. Role of DNA methylation in cancer
    5.2. DNA hypomethylation in cancer
    5.3. Epigenetic alterations involving DNA methylation by mutation
    5.4. DNA hypermethylation in cancer
    5.5. DNA demethylation
6. Histone modifications
    6.1. Non histone methylation
7. Nucleosome remodelling
    7.1. Changes in chromatin
8. Micro RNAs (miRNAs)
    8.1. miRNA biogenesis
    8.2. Biological roles of miRNAs
9. Regulation of epigenetics in cancer progression
10. Role of oxygen and cancer
    10.1. Normoxia and cancer
    10.2. Hypoxia
      10.2.1. Functional effect of epigenetic regulation upon hypoxia
      10.2.2.. Importance of epigenetics in tumor hypoxia and cancer immunotherapy
11. Epigenetic therapy
12. Acknowledgments
13. References

1. ABSTRACT

Genetic and epigenetic modifications in DNA contribute to altered gene expression in aging and cancer. In human cancers, epigenetic changes such as DNA methylation, histone modifications, micro RNAs and nucleosome remodelling all control gene expression. The link between the genetics and epigenetics in cancer is further shown by existence of aberrant metabolism and biochemical pathways in cancer or mutation in genes that are epigenetic players. Reversal of these epigenetic changes has been clearly shown to have therapeutic value in various forms of lymphoma and preleukemia and similar results are appearing for the treatment of solid tumors. In this review, we discuss the functional effects of epigenetic changes inducible by hypoxia, the epigenetic alterations in cancer and how they contribute to tumor progression and their relevance to epigenetic therapy.

13. REFERENCES

1. Q. Lu. The critical importance of epigenetics in autoimmunity. J Autoimmun, 41, 1-5 (2013)
DOI: 10.1016/j.jaut.2013.01.010

2. E. Ballestar. An Introduction to Epigenetics. In: Ballestar E. (eds) Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology, vol 711. Springer, Boston, MA (2011)
DOI: 10.1007/978-1-4419-8216-2

3. E.A.V. Russo, A. Robert Martienssen and D.A. Riggs. Epigenetic mechanisms of gene regulation. Quart Rev Biol, 73( 2), 210-25 (1998)
DOI: 10.1086/420217

4. A.D. Riggs and T.N. Porter. Overview of epigenetic mechanisms. CSH Monograph Archive, 32, (1996)
DOI: 10.1101/0.29-45

5. L.S. Berger, T. Kouzarides, R. Shiekhattar and A. Shilatifard. An operational definition of epigenetics. Genes Dev, 23(7), 781-3 (2009)
DOI: 10.1101/gad.1787609

6. C.H. Waddington. Epigenetics and Evolution. Symp Soc Exp Biol, 7, 186-199 (1953)
DOI: 10.1111/j.1558-5646.1953.tb00099.x

7. E. Baxter, K. Windloch, F. Gannon and S.J. Lee. Epigenetic regulation in cancer progression. Cell Biosci, 4, 45-65 (2014)
DOI: 10.1186/2045-3701-4-45

8. Gary Felsenfeld. A Brief History of Epigenetics. Cold Spring Harb Perspect Biol, 6(1), 1-10 (2014)
DOI: 10.1101/cshperspect.a018200

9. C. H. Waddington. The Epigenotype. 1942. Int J Epidemiol, 41(1), 10-3 (2012)
DOI: 10.1093/ije/dyr184

10. N.R. Navis. Organisers and gens (1940) by C. H. Waddington. Embryo Project Encyclopedia ISSN 1940-5030 (2007)

11. T.O. Avery, M.C. MacLeod and M. McCarty. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med, 79(2), 137–158 (1944)
DOI: 10.1084/jem.79.2.137

12. A. Robertson. Conrad Hal Waddington, 8 November 1905 - 26 September 1975. Biogr Mems Fell R Soc, 23, 575-622 (1977)
DOI: 10.1098/rsbm.1977.0022

13. C. H. Waddington. The strategy of the genes. A Discussion of Some Aspects of Theoretical Biology. London: Allen & Unwin (1957)

14. D.H. Morgan, F. Santos, K. Green, W. Dean, and W. Reik. Epigenetic reprogramming in mammals. Human Mol Genrt, 14(1), R47–R58 (2005)
DOI: 10.1093/hmg/ddi114

15. C. Johnson, O.M. Warmoes, X. Shen, and J.W. Locasale. Epigenetics and cancer metabolism. Cancer Lett, 356(2), 309–314 (2015)
DOI: 10.1016/j.canlet.2013.09.043

16. P.A. Jones and P.W. Laird. Cancer-epigenetics comes of age. Nat Genet, 21(2), 163-7. (1999)
DOI: 10.1038/5947

17. K. Cao and A. Shilatifard. Enhancers in Cancer: Genetic and Epigenetic Deregulation. Ref Module Biomed Sci, Encyclopedia Cancer. 559-568 (2019)
DOI: 10.1016/B978-0-12-801238-3.65063-8

18. S. Biswas and C. M. Rao. Epigenetics in cancer: Fundamentals and Beyond. Pharmacol Therapeut, 173, 118-134 (2017)
DOI: 10.1016/j.pharmthera.2017.02.011

19. D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674 (2011)
DOI: 10.1016/j.cell.2011.02.013

20. S. B. Baylin and P. A. Jones. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer, 11(10), 726-734 (2011)
DOI: 10.1038/nrc3130

21. S. Sharma, T. K. Kelly and P. A. Jones. Epigenetics in cancer. Carcinogen, 31(1), 27-36 (2009)
DOI: 10.1093/carcin/bgp220

22. K. Luger, A. W. Mäder, R.K. Richmond, D.F. Sargent and T.J. Richmond. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648), 251-260 (1997)
DOI: 10.1038/38444

23. P. A. Jones and S. B. Baylin. The Epigenomics of Cancer. Cell, 128(4), 683-692 (2007)
DOI: 10.1016/j.cell.2007.01.029

24. B. E. Bernstein, A. Meissner and E. S. Lander. The Mammalian Epigenome. Cell, 128(4), 669-681 (2007)
DOI: 10.1016/j.cell.2007.01.033

25. M. M. Suzuki and A. Bird. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 9(6), 465-476 (2008)
DOI: 10.1038/nrg2341

26. T. Kouzarides. Chromatin Modifications and Their Function. Cell, 128(4), 693-705 (2007)
DOI: 10.1016/j.cell.2007.02.005

27. B. Zhang, X. Pan, G. P. Cobb, and T. A. Anderson. microRNAs as oncogenes and tumor suppressors. Development Biol, 302(1), 1-12 (2007)
DOI: 10.1016/j.ydbio.2006.08.028

28. C. Jiang and B. F. Pugh. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet, 10(3), 161-172 (2009)
DOI: 10.1038/nrg2522

29. B.W. Futscher. Epigenetic Changes During Cell Transformation. Epigenet Alt Oncogen, 179-194 (2012)
DOI: 10.1007/978-1-4419-9967-2_9

30. D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674 (2011)
DOI: 10.1016/j.cell.2011.02.013

31. P. A. Jones and S. B. Baylin. The Epigenomics of Cancer. Cell, 128(4), 683-692 (2007)
DOI: 10.1016/j.cell.2007.01.029

32. T. Ushijima & K. Asada. Aberrant DNA methylation in contrast with mutations. Cancer Sci, 101(2), 300-305 (2010)
DOI: 10.1111/j.1349-7006.2009.01434.x

33. S. Sharma, T. K. Kelly and P.A. Jones. Epigenetics in cancer. Carcinogen, 31(1), 27-36 (2009)
DOI: 10.1093/carcin/bgp220

34. J. Marlowe, S.S. Teo, S.D. Chibout, F. Pognan and J. Moggs. Mapping the epigenome - impact for toxicology. Mol Clinic Environ Toxicol (2009)
DOI: 10.1007/978-3-7643-8336-7_10

35. J.K. Kim, M. Samaranayake and S. Pradhan. Epigenetic mechanisms in mammals. Cell Mol Lif Sci, 66(4), 596-612 (2008)
DOI: 10.1007/s00018-008-8432-4

36. S.K.T. Ooi, A.H. O'Donnell and T.H. Bestor. Mammalian cytosine methylation at a glance. J Cell Sci, 122(16), 2787-2791 (2009)
DOI: 10.1242/jcs.015123

37. Z. Chen and A.D. Riggs. DNA methylation and demethylation in mammals. J Biol Chem, 286(21), 18347-18353 (2011)
DOI: 10.1074/jbc.R110.205286

38. T. Jenuwein. Translating the histone code. Science, 293(5532), 1074-1080 (2001)
DOI: 10.1126/science.1063127

39. T. Kouzarides. Chromatin modifications and their function. Cell, 128(4), 693-705 (2007)
DOI: 10.1016/j.cell.2007.02.005

40. I. P. Pogribny and I. Rusyn. Environmental toxicants, epigenetics, and cancer. Epigenet Alt Oncogen, 754, 215-232 (2012)
DOI: 10.1007/978-1-4419-9967-2_11

41. G.B.N. Chainy, B. Paital, and J. Dandapat. An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica, 2016, 1-8 (2016)
DOI: 10.1155/2016/6126570

42. M. Daniel and T.O. Tollefsbol. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol, 218(1), 59-70 (2015)
DOI: 10.1242/jeb.107110

43. B. Paital, T. Jahan, S. Priyadarshini and A. Mohanty. Antioxidants and ageing. Open J Environ Biol, 2(1), 021 - 022 (2017)
DOI: 10.17352/ojeb.000004

44. G.T. Iswariya, B. Paital, P.R. Padma and R. Nirmaladevi. microRNAs: Epigenetic players in cancer and aging. Front Biosci Scholar, 11, 9-9 (2019)
DOI: 10.2741/s525

45. J. R. Aunan, W. C. Cho and K. Søreide. The Biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks. Aging Dis, 8(5), 628 (2017)
DOI: 10.14336/AD.2017.0103

46. P. Mishra, B. Paital, S. Jena, S. S. Swain, S. Kumar, M. K. Yadav and L. Samanta. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Sci Rep, 9(1), 7408 (2019)
DOI: 10.1038/s41598-019-43320-5

47. A. Razin and A. Riggs. DNA methylation and gene function. Science, 210(4470), 604-610 (1980)

48. T. Phillips. The role of methylation in gene expression. Nat Educ, 1(1), 116 (2008)

49. R. Straussman, D. Nejman, D. Roberts, I. Steinfeld, B. Blum, N. Benvenisty and H. Cedar. Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol, 16(5), 564-571 (2009)
DOI: 10.1038/nsmb.1594

50. L. Laurent, E. Wong, G. Li, T. Huynh, A. Tsirigos, C. T. Ong and C.-L. Wei. Dynamic changes in the human methylome during differentiation. Genom Res, 20(3), 320-331 (2010)
DOI: 10.1101/gr.101907.109

51. G. Almouzni and H. Cedar. Maintenance of Epigenetic Information. Cold Spring Harb Persp Biol, 8(5), a019372 (2016)
DOI: 10.1101/cshperspect.a019372

52. Y. Pollack, R. Stein, A. Razin and H. Cedar. Methylation of foreign DNA sequences in eukaryotic cells. Proc National Acad Sci, 77(11), 6463-6467 (1980)
DOI: 10.1073/pnas.77.11.6463

53. M. Wigler. The somatic replication of DNA methylation. Cell, 24(1), 33-40 (1981)
DOI: 10.1016/0092-8674(81)90498-0

54. E. Li, T. H. Bestor and R. Jaenisch. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69(6), 915-926 (1992)
DOI: 10.1016/0092-8674(92)90611-F

55. E. Li and Y. Zhang. DNA Methylation in Mammals. Cold Spring Harb Persp Biol, 6(5), a019133-a019133 (2014)
DOI: 10.1101/cshperspect.a019133

56. Y. Gruenbaum, H. Cedar and A. Razin. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature, 295(5850), 620-622 (1982)
DOI: 10.1038/295620a0

57. X. Cheng. Structural and Functional Coordination of DNA and Histone Methylation. Cold Spring Harb Persp Biol, 6(8), a018747-a018747 (2014)
DOI: 10.1101/cshperspect.a018747

58. Y. Gruenbaum, T. Naveh-Many, H. Cedar and A. Razin. Sequence specificity of methylation in higher plant DNA. Nature, 292(5826), 860-862 (1981)
DOI: 10.1038/292860a0

59. L. Lande-Diner, J. Zhang, I. Ben-Porath, N. Amariglio, I. Keshet, M. Hecht and H. Cedar. Role of DNA Methylation in Stable Gene Repression. J. Biol Chem, 282(16), 12194-12200 (2007)
DOI: 10.1074/jbc.M607838200

60. R. Lucchini and J. M. Sogo. Replication of transcriptionally active chromatin. Nature, 374(6519), 276-280 (1995)
DOI: 10.1038/374276a0

61. S. Eden, T. Hashimshony, I. Keshet, H. Cedar and A. W. Thorne. DNA methylation models histone acetylation. Nature, 394(6696), 842-842 (1998)
DOI: 10.1038/29680

62. P. L. Jones, G. C. Jan Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger and A.P. Wolffe. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2), 187-191 (1998)
DOI: 10.1038/561

63. X. Nan, H.-H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R.N. Eisenman and A. Bird. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683), 386-389 (1998)
DOI: 10.1038/30764

64. T. Hashimshony, J. Zhang, I. Keshet, M. Bustin and H. Cedar. The role of DNA methylation in setting up chromatin structure during development. Nat Genet, 34(2), 187-192 (2003)
DOI: 10.1038/ng1158

65. N. Papadopoulos, N. Nicolaides, Y. Wei, S. Ruben, K. Carter and C. Rosen. Mutation of a mutL homolog in hereditary colon cancer. Science, 263(5153), 1625-1629 (1994)
DOI: 10.1126/science.8128251

66. V. Greger, N. Debus, D. Lohmann, W. Hopping, E. Passarge and B. Horsthemke. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Human Genet, 94(5) (1994)
DOI: 10.1007/BF00211013

67. F.M. Kane, M. Loda, M.G. Gaida, J. Lipman, R. Mishra, J. H. Goldman, M. Jessup and R. Kolodner. Methylation of the hMLH1 Promoter Correlates with Lack of Expression of hMLH1 in Sporadic Colon Tumors and Mismatch Repair-defective Human Tumor Cell Lines. Cancer Res, 57(5), 808-11, (1997).

68. C. Stirzaker, DS. Millar, CL. Paul, PM. Warnecke, J. Harrison, PC. Vincent, M. Frommer, SJ. Clark. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res, 57(11), 2229-37 (1997)

69. J.G. Herman, A. Umar, K. Polyak, J.R. Graff, N. Ahuja, J.-P. J Issa and S.B. Baylin. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc National Acad Sci, 95(12), 6870-6875 (1998)
DOI: 10.1073/pnas.95.12.6870

70. T. Furukawa, F. Konishi, S. Masubuchi, K. Shitoh, H. Nagai and T. Tsukamoto. Densely methylatedMLH1 promoter correlates with decreased mRNA expression in sporadic colorectal cancers. Gene Chromosom Cancer, 35(1), 1-10 (2002)
DOI: 10.1002/gcc.10100

71. F. A. Dick. Retinoblastoma Tumor Suppressor Gene. Ref Mod Biomedic Sci, 30(13), 1492–1502 (2015)
DOI: 10.1016/B978-0-12-801238-3.04443-3

72. S.A. Belinsky, K.J. Nikula, W. A. Palmisano, R. Michels, G. Saccomanno, E. Gabrielson and J.G. Herman. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc National Acad Sci, 95(20), 11891-11896 (1998)
DOI: 10.1073/pnas.95.20.11891

73. W.H. Lee, R.A. Morton, J.I. Epstein, J.D. Brooks, P.A. Campbell, G.S. Bova and W.G. Nelson. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc National Acad Sci, 91(24), 11733-11737 (1994)
DOI: 10.1073/pnas.91.24.11733

74. M. Makos, B.D. Nelkin, M.I. Lerman, F. Latif, B. Zbar and S.B. Baylin. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc National Acad Sci, 89(5), 1929-1933 (1992)
DOI: 10.1073/pnas.89.5.1929

75. B. Vogelstein, E. R. Fearon, S. R. Hamilton, S. E. Kern, A. C. Preisinger, M. Leppert and J. L. Bos. Genetic Alterations during Colorectal-Tumor Development. New Eng J Med, 319(9), 525-532 (1988)
DOI: 10.1056/NEJM198809013190901

76. S. J. Clark and J. Melki. DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene, 21(35), 5380-5387 (2002)
DOI: 10.1038/sj.onc.1205598

77. B.C. Christensen, C.J. Marsit, E.A. Houseman, J.J Godleski, J.L. Longacker, S. Zheng, K.T. Kelsey. Differentiation of Lung Adenocarcinoma, Pleural Mesothelioma, and Nonmalignant Pulmonary Tissues Using DNA Methylation Profiles. Cancer Res, 69(15), 6315-6321 (2009)
DOI: 10.1158/0008-5472.CAN-09-1073

78. M. Toyota, N. Ahuja, M. Ohe-Toyota, J. G. Herman, S. B. Baylin abnd J.-P. J. Issa. CpG island methylator phenotype in colorectal cancer. Proc National Acad Sci, 96(15), 8681-8686 (1999)
DOI: 10.1073/pnas.96.15.8681

79. A. P. Feinberg and B. Vogelstein. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895), 89-92 (1983)
DOI: 10.1038/301089a0

80. M. Ehrlich and M. Lacey. DNA Hypomethylation and Hemimethylation in Cancer. Epigenet Alt Oncogen, 31-56 (2012)
DOI: 10.1007/978-1-4419-9967-2_2

81. R. Z. Chen, U. Pettersson, C. Beard, L. Jackson-Grusby and R. Jaenisch. DNA hypomethylation leads to elevated mutation rates. Nature, 395(6697), 89-93 (1998)
DOI: 10.1038/25779

82. A. Narayan, W. Ji, X.-Y Zhang, A. Marrogi, J. R. Graff, S. B. Baylin and M. Ehrlich. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer, 77(6), 833-838 (1998)
DOI: 10.1002/(SICI)1097-0215(19980911)77:6<833::AID-IJC6>3.0.CO;2-V

83. F. Gaudet. Induction of Tumors in Mice by Genomic Hypomethylation. Science, 300(5618), 489-492 (2003)
DOI: 10.1126/science.1083558

84. K. D. Hansen, W. Timp, H. C. Bravo, S. Sabunciyan, B. Langmead, O. G. McDonald and A.P. Feinberg. Increased methylation variation in epigenetic domains across cancer types. Nat Genet, 43(8), 768-775 (2011)
DOI: 10.1038/ng.865

85. B. P. Berman, D. J. Weisenberger, J. F. Aman, T. Hinoue, Z. Ramjan, Y. Liu and P. W. Laird. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet, 44(1), 40-46 (2011)
DOI: 10.1038/ng.969

86. G. C. Hon, R. D. Hawkins, O. L. Caballero, C. Lo, R. Lister, M. Pelizzola and B. Ren. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res, 22(2), 246-258 (2011)
DOI: 10.1101/gr.125872.111

87. S. A. Bert, M. D. Robinson, D. Strbenac, A. L. Statham, J. Z. Song, T. Hulf and S. J. Clark. Regional Activation of the Cancer Genome by Long-Range Epigenetic Remodeling. Cancer Cell, 23(1), 9-22 (2013)
DOI: 10.1016/j.ccr.2012.11.006

88. H. Shen and P. W. Laird, P. W. Interplay between the Cancer Genome and Epigenome. Cell, 153(1), 38-55 (2013)
DOI: 10.1016/j.cell.2013.03.008

89. G. Egger, G. Liang, A. Aparicio and P. A. Jones. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457-463 (2004)
DOI: 10.1038/nature02625

90. A. Spannhoff, A.-T. Hauser, R. Heinke, W. Sippl and M. Jung. The Emerging Therapeutic Potential of Histone Methyltransferase and Demethylase Inhibitors. Chem Med Chem, 4(10), 1568-1582 (2009)
DOI: 10.1002/cmdc.200900301

91. T. K. Kelly, D. D. De Carvalho and P. A. Jones. Epigenetic modifications as therapeutic targets. Nat Biotechnol, 28(10), 1069-1078 (2010)
DOI: 10.1038/nbt.1678

92. K. M. Bernt, N. Zhu, A. U. Sinha, S. Vempati, J. Faber, A. V. Krivtsov and S. A. Armstrong. MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell, 20(1), 66-78 (2011)
DOI: 10.1016/j.ccr.2011.06.010

93. S. R. Daigle, E. J. Olhava, C. A. Therkelsen, C. R. Majer, C.J. Sneeringer, J. Song and R. M. Pollock. Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor. Cancer Cell, 20(1), 53-65 (2011)
DOI: 10.1016/j.ccr.2011.06.009

94. M. A. Dawson and T. Kouzarides. Cancer Epigenetics: From Mechanism to Therapy. Cell, 150(1), 12-27 (2012)
DOI: 10.1016/j.cell.2012.06.013

95. N. Azad, C. A. Zahnow, C. M. Rudin and S. B. Baylin. The future of epigenetic therapy in solid tumours-lessons from the past. Nat Rev Clinic Oncol, 10(5), 256-266 (2013)
DOI: 10.1038/nrclinonc.2013.42

96. P. A. Jones. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13(7), 484-492 (2012)
DOI: 10.1038/nrg3230

97. M. Kulis, S. Heath, M. Bibikova, A. C. Queirós, A. Navarro, G. Clot and J. I. Martín-Subero. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet, 44(11), 1236-1242, (2012)
DOI: 10.1038/ng.2443

98. G. Pfeifer. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci, 19(4), 1166 (2018)
DOI: 10.3390/ijms19041166

99. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456), 43-49 (2013)
DOI: 10.1038/nature12222

100. Andrew P. Feinberg, Charles W. Gehrke, Kenneth C. Kuo and Melanie Ehrlich. Reduced Genomic 5-Methylcytosine Content in Human Colonic Neoplasia. Cancer Res, 48, 1159-1161 (1988)

101. M. A. Gama-Sosa, V. A. Slagel, R. W. Trewyn, R. Oxenhandler, K. C. Kuo, C. W. Gehrke and M. Ehrlich. The 5-methylcytosine content of DNA from human tumors. Nucleic Acid Res, 11(19), 6883-6894 (1983)
DOI: 10.1093/nar/11.19.6883

102. S. Goelz, B. Vogelstein, Hamilton and A. Feinberg. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228(4696), 187-190 (1985)
DOI: 10.1126/science.2579435

103. C. Mertineit, J.A. Yoder, T. Taketo, D.W. Laird, J.M. Trasler and T.H. Bestor. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development., 125(5):889-97. (1998)

104. M. Wossidlo, T. Nakamura, K. Lepikhov, C. J. Marques, V. Zakhartchenko and M. Boiani, J. Walter. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Comm, 2(1) (2011)
DOI: 10.1038/ncomms1240

105. V. Valinluck and L. C. Sowers. Endogenous Cytosine Damage Products Alter the Site Selectivity of Human DNA Maintenance Methyltransferase DNMT1. Cancer Res, 67(3), 946-950 (2007)
DOI: 10.1158/0008-5472.CAN-06-3123

106. Y.-F He, B.-Z. Li, Z. Li, P. Liu, Y. Wang, Q. Tang and G.-L. Xu, Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science, 333(6047), 1303-1307 (2011)
DOI: 10.1126/science.1210944

107. A. Maiti and A. C. Drohat. Thymine DNA Glycosylase Can Rapidly Excise 5-Formylcytosine and 5-Carboxylcytosine. J Biol Chem, 286(41), 35334-35338 (2011)
DOI: 10.1074/jbc.C111.284620

108. S. Kangaspeska, B. Stride, R. Métivier, M. Polycarpou-Schwarz, D. Ibberson, R. P. Carmouche and G. Reid. Transient cyclical methylation of promoter DNA. Nature, 452(7183), 112-115 (2008)
DOI: 10.1038/nature06640

109. R. Métivier, R. Gallais, C. Tiffoche, C. Le Péron, R. Z. Jurkowska, R. P. Carmouche and G. Salbert. Cyclical DNA methylation of a transcriptionally active promoter. Nature, 452(7183), 45-50 (2008)
DOI: 10.1038/nature06544

110. T. Jenuwein. Translating the Histone Code. Science, 293(5532), 1074-1080 (2001)
DOI: 10.1126/science.1063127

111. P. Chi, C. D. Allis and G. G. Wang. Covalent histone modifications - miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer, 10(7), 457-469 (2010)
DOI: 10.1038/nrc2876

112. J. C. Rice, S. D. Briggs, B. Ueberheide, C. M. Barber, J. Shabanowitz, D. F. Hunt and C. D. Allis. Histone Methyltransferases Direct Different Degrees of Methylation to Define Distinct Chromatin Domains. Mol Cell, 12(6), 1591-1598 (2003)
DOI: 10.1016/S1097-2765(03)00479-9

113. A. P. Feinberg and B. Tycko. The history of cancer epigenetics. Nat Rev Cancer, 4(2), 143-153 (2004)
DOI: 10.1038/nrc1279

114. T. Jenuwein. Re-SET-ting heterochromatin by histone methyltransferases. Trend Cell Biol, 11(6), 266-273 (2001)
DOI: 10.1016/S0962-8924(01)02001-3

115. P. A. Wade, D. Pruss and A. P. Wolffe. Histone acetylation: chromatin in action. Trend Biochem Sci, 22(4), 128-132 (1997)
DOI: 10.1016/S0968-0004(97)01016-5

116. C. L. Peterson and M.-A. Laniel. Histones and histone modifications. Curr Biol, 14(14), R546-R551 (2004)
DOI: 10.1016/j.cub.2004.07.007

117. A. Shilatifard. Chromatin Modifications by Methylation and Ubiquitination: Implications in the Regulation of Gene Expression. Ann Rev Biochem, 75(1), 243-269 (2006)
DOI: 10.1146/annurev.biochem.75.103004.142422

118. Y. Shiio and R. N. Eisenman. Histone sumoylation is associated with transcriptional repression. Proc Nat Acad Sci, 100(23), 13225-13230 (2003)
DOI: 10.1073/pnas.1735528100

119. W. Fischle, Y. Wang and C. D. Allis. Histone and chromatin cross-talk. Curr Opin Cell Biol, 15(2), 172-183 (2003)
DOI: 10.1016/S0955-0674(03)00013-9

120. S. Messner and M. O. Hottiger. Histone ADP-ribosylation in DNA repair, replication and transcription. Trend Cell Biol, 21(9), 534-542 (2011)
DOI: 10.1016/j.tcb.2011.06.001

121. M. Lachner. An epigenetic road map for histone lysine methylation. J Cell Sci, 116(11), 2117-2124 (2003)
DOI: 10.1242/jcs.00493

122. T. Kouzarides. Chromatin Modifications and Their Function. Cell, 128(4), 693-705 (2007)
DOI: 10.1016/j.cell.2007.02.005

123. S. L. Berger, Histone modifications in transcriptional regulation. Curr Opin Genet Develop, 12(2), 142-148 (2002)
DOI: 10.1016/S0959-437X(02)00279-4

124. L. J. M. Jason, S. C. Moore, J. D. Lewis, and G. Lindsey and J. Ausió. Histone ubiquitination: a tagging tail unfolds? BioEssay, 24(2), 166-174 (2002)
DOI: 10.1002/bies.10038

125. C. Dong, Y. Wu, J. Yao, Y. Wang, Y. Yu, P. G. Rychahou and B. P. Zhou. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clinical Invest, 122(4), 1469-1486 (2012)
DOI: 10.1172/JCI57349

126. M.-W. Chen, K.-T. Hua, H.-J. Kao, C.-C. Chi, L.-H. G. Wei, Johansson and M.-L. Kuo. H3K9 Histone Methyltransferase G9a Promotes Lung Cancer Invasion and Metastasis by Silencing the Cell Adhesion Molecule Ep-CAM. Cancer Res, 70(20), 7830-7840 (2010)
DOI: 10.1158/0008-5472.CAN-10-0833

127. C. G. Kleer, Q. Cao, S. Varambally, R. Shen, I. Ota, S. A. Tomlins and A. M. Chinnaiyan. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Nat Acad Sci, 100(20), 11606-11611 (2003)
DOI: 10.1073/pnas.1933744100

128. S. Varambally. S. M. Dhanasekaran, M. Zhou, T. R. Barrette, C. Kumar-Sinha, M. G. Sanda and A. M. Chinnaiyan. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419(6907), 624-629 (2002)
DOI: 10.1038/nature01075

129. K. Agger, P. A. C. Cloos, L. Rudkjaer, K. Williams, G. Andersen, J. Christensen and K. Helin. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Gene Develop, 23(10), 1171-1176 (2009)
DOI: 10.1101/gad.510809

130. J. S. Song, Y. S. Kim, D.K. Kim, S.I. Park, and S. J. Jang. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int, 62(3), 182-190 (2012)
DOI: 10.1111/j.1440-1827.2011.02776.x

131. Y. Shi, F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole and Y. Shi. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell, 119(7), 941-953 (2004)
DOI: 10.1016/j.cell.2004.12.012

132. J. Huang, R. Sengupta, A. B. Espejo, M. G. Lee, J. A. Dorsey, M. Richter, S. L. Berger. p53 is regulated by the lysine demethylase LSD1. Nature, 449(7158), 105-108 (2007)
DOI: 10.1038/nature06092

133. S. S. Ng, K. L. Kavanagh, M. A. McDonough, D. Butler, E. S. Pilka, B. M. R. Lienard and U. Oppermann. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 448(7149), 87-91 (2007)
DOI: 10.1038/nature05971

134. Y. Okada, G. Scott, M. K. Ray, Y. Mishina and Y. Zhang. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature, 450(7166), 119-123 (2007)
DOI: 10.1038/nature06236

135. S. Chuikov, J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov and D. Reinberg. Regulation of p53 activity through lysine methylation. Nature, 432(7015), 353-360 (2004)
DOI: 10.1038/nature03117

136. S. R. Daigle, E. J. Olhava, C. A. Therkelsen, C. R. Majer, C. J. Sneeringer, J. Song and R. M. Pollock. Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor. Cancer Cell, 20(1), 53-65 (2011)
DOI: 10.1016/j.ccr.2011.06.009

137. J. Huang, J. Dorsey, S. Chuikov, X. Zhang, T. Jenuwein, D. Reinberg and S. L. Berger. G9a and Glp Methylate Lysine 373 in the Tumor Suppressor p53. J Biol Chem, 285(13), 9636-9641 (2010)
DOI: 10.1074/jbc.M109.062588

138. E. Kim, M. Kim, D.-H. Woo, Y. Shin, J. Shin, N. Chang and J. Lee. Phosphorylation of EZH2 Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Cell, 23(6), 839-852 (2013)
DOI: 10.1016/j.ccr.2013.04.008

139. A. He, X. Shen, Q. Ma, J. Cao, A. von Gise, P. Zhou and W. T. Pu. PRC2 directly methylates GATA4 and represses its transcriptional activity. Gene Develop, 26(1), 37-42 (2012)
DOI: 10.1101/gad.173930.111

140. J.M. Lee, J. S. Lee, H. Kim, K. Kim, H. Park, J.-Y. Kim and S. H. Baek. EZH2 Generates a Methyl Degron that Is Recognized by the DCAF1/DDB1/CUL4 E3 Ubiquitin Ligase Complex. Mol Cell, 48(4), 572-586 (2012)
DOI: 10.1016/j.molcel.2012.09.004

141. J. S. Lee, Y. Kim, J. Bhin, H.-J. R. Shin, H. J. Nam, S. H. Lee and S. H. Baek. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Nat Acad Sci, 108(33), 13510-13515 (2011)
DOI: 10.1073/pnas.1106106108

142. P. B. Becker and J. L. Workman. Nucleosome Remodeling and Epigenetics. Cold Spring Harb Persp Biol, 5(9), a017905-a017905 (2013)
DOI: 10.1101/cshperspect.a017905

143. Catherine A. Musselman. Chromatin and epigenetic signaling pathways. In:Chromatin Signaling and Neurological Disorders. O. Binda. Elsevier, 12, 1-23 (2019)
DOI: 10.1016/B978-0-12-813796-3.00001-8

144. M.A. Morgan and A. Shilatifard. Chromatin signatures of cancer. Gene Develop, 29(3), 238-249 (2015)
DOI: 10.1101/gad.255182.114

145. R. Stein, A. Razin and H. Cedar. In vitro methylation of the hamster adenine phosphoribosyl transferase gene inhibits its expression in mouse L cells. Proc Nat Acad Sci, 79(11), 3418-3422 (1982)
DOI: 10.1073/pnas.79.11.3418

146. J. E. Dodge, B. H. Ramsahoye, Z. G. Wo, M. Okano and E. Li. De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 289(1-2), 41-48 (2002)
DOI: 10.1016/S0378-1119(02)00469-9

147. M. Okano, D. W. Bell, D. A. Haber and E. Li. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell, 99(3), 247-257, (1999)
DOI: 10.1016/S0092-8674(00)81656-6

148. M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno and A. Rao. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 324(5929), 930-935 (2009)
DOI: 10.1126/science.1170116

149. R. Lister, M. Pelizzola, R. H. Dowen, R. D. Hawkins, G. Hon, J. Tonti-Filippini and J. R. Ecker. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315-322 (2009)
DOI: 10.1038/nature08514

150. J. Xue, Z. Chen, X. Gu, Y. Zhang, and W. Zhang. MicroRNA-148a inhibits migration of breast cancer cells by targeting MMP-13. Tumor Biology, 37(2), 1581-1590 (2015)
DOI: 10.1007/s13277-015-3926-9

151. B. H. Ramsahoye, D. Biniszkiewicz, F. Lyko, V. Clark, A.P. Bird and R. Jaenisch, Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Nat Acad Sci, 97(10), 5237-5242 (2000)
DOI: 10.1073/pnas.97.10.5237

152. S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins, J. A. Swenberg and Y. Zhang. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science, 333(6047), 1300-1303 (2011)
DOI: 10.1126/science.1210597

153. B. D. Strahl and C. D. Allis. The language of covalent histone modifications. Nature, 403(6765), 41-45 (2000)
DOI: 10.1038/47412

154. T. K. Barth and A. Imhof. Fast signals and slow marks: the dynamics of histone modifications. Trend Biochem Sci, 35(11), 618-626 (2010)
DOI: 10.1016/j.tibs.2010.05.006

155. T. J. Ley, T. L. Ding, M. J. Walter, M. D. McLellan, T. Lamprecht, D. E. Larson and R. K. Wilson. DNMT3A Mutations in Acute Myeloid Leukemia. New Eng J Med, 363(25), 2424-2433 (2010)
DOI: 10.1056/NEJMoa1005143

156. K. Moran-Crusio, L. Reavie, A. Shih, O. Abdel-Wahab, D. Ndiaye-Lobry, C. Lobry and R. L. Levine. Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation. Cancer Cell, 20(1), 11-24 (2011)
DOI: 10.1016/j.ccr.2011.06.001

157. G. Van Haaften, G. L. Dalgliesh, H. Davies, L. Chen, G. Bignell, C. Greenman and J. Teague. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genetics, 41(5), 521-523 (2009)
DOI: 10.1038/ng.349

158. T. Paranjape, F. J. Slack and J. B. Weidhaas. MicroRNAs: tools for cancer diagnostics. Gut, 58(11), 1546-1554 (2009)
DOI: 10.1136/gut.2009.179531

159. M. Osaki, F. Takeshita and T. Ochiya. MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers, 13(7-8), 658-670 (2008)
DOI: 10.1080/13547500802646572

160. B. Zhang, X. Pan, G. P. Cobb and T. A. Anderson. microRNAs as oncogenes and tumor suppressors. Developmental Biology, 302(1), 1-12 (2007)
DOI: 10.1016/j.ydbio.2006.08.028

161. F. Sato, S. Tsuchiya, S. J. Meltzer and K. Shimizu. MicroRNAs and epigenetics. FEBS J, 278(10), 1598-1609 (2011)
DOI: 10.1111/j.1742-4658.2011.08089.x

162. T. Kunej, I. Godnic, J. Ferdin, S. Horvat, P. Dovc and G. A. Calin. Epigenetic regulation of microRNAs in cancer: An integrated review of literature. Mut Res/Fund Mol Mech Mutagen, 717(1-2), 77-84 (2011)
DOI: 10.1016/j.mrfmmm.2011.03.008

163. G. A. Calin, C. D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch and C. M. Croce. Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Nat Acad Sci, 99(24), 15524-15529 (2002)
DOI: 10.1073/pnas.242606799

164. D. Nass, S. Rosenwald, E. Meiri, S. Gilad, H. Tabibian-Keissar, A. Schlosberg and N. Rosenfeld. MiR-92b and miR-9/9* Are Specifically Expressed in Brain Primary Tumors and Can Be Used to Differentiate Primary from Metastatic Brain Tumors. Brain Pathol, 19(3), 375-383 (2009)
DOI: 10.1111/j.1750-3639.2008.00184.x

165. U. Lehmann, B. Hasemeier, M. Christgen, M. Müller, D. Römermann, F. Länger and H. Kreipe. Epigenetic inactivation of microRNA genehsa-mir-9-1in human breast cancer. J Pathol, 214(1), 17-24 (2008)
DOI: 10.1002/path.2251

166. Y. Li, Z. Xu, B. Li, Z. Zhang, H. Luo, Y. Wang, X. Wu. Epigenetic silencing of miRNA-9 is correlated with promoter-proximal CpG island hypermethylation in gastric cancer in vitro and in vivo. Int J Oncol, 45(6), 2576-2586 (2014)
DOI: 10.3892/ijo.2014.2667

167. Ye Song, Jiangchao Li, Yinghui Zhu, Yongdong Dai1, Tingting Zeng, Lulu Liu, Jianbiao Li, Hongbo Wang, Yanru Qin, Musheng Zeng, Xin-Yuan Guan and Yan Li. MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget, 5(22), 11669–11680 (2014)
DOI: 10.18632/oncotarget.2581

168. J. Huang, J. Yu, J. Li, Y. Liu and R. Zhong. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Medic Oncol, 29(4), 2402-2408 (2012)
DOI: 10.1007/s12032-012-0210-3

169. J. Xia, X. Guo, J. Yan and K. Deng. The role of miR-148a in gastric cancer. Journal of Cancer Res Clinic Oncol, 140(9), 1451-1456 (2014)
DOI: 10.1007/s00432-014-1649-8

170. C. Neuzillet, A. Tijeras-Raballand, R. Cohen, J. Cros, S. Faivre, E. Raymond and A. de Gramont. Targeting the TGFβ pathway for cancer therapy. Pharmacol Therap, 147, 22-31 (2015)
DOI: 10.1016/j.pharmthera.2014.11.001

171. D. Lodygin, V. Tarasov, A. Epanchintsev, C. Berking, T. Knyazeva, H. Körner and H. Hermeking. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7(16), 2591-2600 (2008)
DOI: 10.4161/cc.7.16.6533

172. H. Kwon, K. Song, C. Han, J. Zhang, N. Ungerleider, L. Yao, and T. Wu. Epigenetic silencing of microRNA-34a in human cholangiocarcinoma cells via DNA methylation and EZH2: Impact on regulation of Notch pathway. Am J Pathol, 187(10), 2288-2299 (2017)
DOI: 10.1016/j.ajpath.2017.06.014

173. Y. Xie, P. Zong, W. Wang, D. Liu, B. Li, Y. Wang and F. Li. Hypermethylation of potential tumor suppressor miR-34b/c is correlated with late clinical stage in patients with soft tissue sarcomas. Exp Mol Pathol, 98(3), 446-454 (2015)
DOI: 10.1016/j.yexmp.2015.03.017

174. F. Balaguer, A. Link, J. J. Lozano, M. Cuatrecasas, T. Nagasaka, C. R. Boland and A. Goel. Epigenetic Silencing of miR-137 Is an Early Event in Colorectal Carcinogenesis. Cancer Res, 70(16), 6609-6618 (2010)
DOI: 10.1158/0008-5472.CAN-10-0622

175. Y. Deng, H. Deng, F. Bi, J. Liu, L. T. Bemis, D. Norris and Q. Zhang. MicroRNA-137 Targets Carboxyl-terminal Binding Protein 1 in Melanoma Cell Lines. Int J Biol Sci, 7(1), 133-137 (2011)
DOI: 10.7150/ijbs.7.133

176. Y. Zhao, Y. Li, G. Lou, L. Zhao, Z. Xu, Y. Zhang & F. He. MiR-137 Targets Estrogen-Related Receptor Alpha and Impairs the Proliferative and Migratory Capacity of Breast Cancer Cells. PLoS ONE, 7(6), e39102 (2012)
DOI: 10.1371/journal.pone.0039102

177. X. Zhu, Y. Li, H. Shen, H. Li, L. Long, L. Hui & W. Xu. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett, 587(1), 73-81 (2012)
DOI: 10.1016/j.febslet.2012.11.004

178. M. Karsy, E. Arslan and F. Moy. Current Progress on Understanding MicroRNAs in Glioblastoma Multiforme. Gene Cancer, 3(1), 3-15, (2012)
DOI: 10.1177/1947601912448068

179. W. Li, H. Huang, J. Su, X. Ji, X. Zhang, Z. Zhang and H. Wang. RETRACTED ARTICLE: miR-124 Acts as a Tumor Suppressor in Glioblastoma via the Inhibition of Signal Transducer and Activator of Transcription 3. Mol Neurobiol, 54(4), 2555-2561 (2016)
DOI: 10.1007/s12035-016-9852-z

180. B. Zeng, Z. Li, R. Chen, N. Guo, J. Zhou, Q. Zhou and Y. Gong. Epigenetic regulation of miR-124 by Hepatitis C Virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett, 586(19), 3271-3278 (2012)
DOI: 10.1016/j.febslet.2012.06.049

181. Y. Liu, S. El-Naggar, D. S. Darling, Y. Higashi and D. C. Dean. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development, 135(3), 579-588 (2008)
DOI: 10.1242/dev.007047

182. J. S. Lee, Y. Kim, I. S. Kim, B. Kim, H. J. Choi, J. M. Lee and S. H. Baek. Negative Regulation of Hypoxic Responses via Induced Reptin Methylation. Mol Cell, 39(1), 71-85 (2010)
DOI: 10.1016/j.molcel.2010.06.008

183. J. A. Bertout, S. A. Patel and M. C. Simon. The impact of O2 availability on human cancer. Nat Rev Cancer, 8(12), 967-975 (2008)
DOI: 10.1038/nrc2540

184. D. R. Borger, L. C. Gavrilescu, M. C. Bucur, M. Ivan and J. A. DeCaprio. AMP-activated protein kinase is essential for survival in chronic hypoxia. Bioch Biophys Res Comm, 370(2), 230-234, (2008)
DOI: 10.1016/j.bbrc.2008.03.056

185. R. Fukuda, H. Zhang, J. Kim, L. Shimoda, C. V. Dang G. L. Semenza. HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells. Cell, 129(1), 111-122 (2007)
DOI: 10.1016/j.cell.2007.01.047

186. G. L. Semenza. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Developt, 20(1), 51-56 (2010)
DOI: 10.1016/j.gde.2009.10.009

187. A. L. Harris. Hypoxia - a key regulatory factor in tumour growth. Nat Rev Cancer, 2(1), 38-47 (2002)
DOI: 10.1038/nrc704

188. A. J. Majmundar, W. J. Wong and M. C. Simon. Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Mol Cell, 40(2), 294-309 (2010)
DOI: 10.1016/j.molcel.2010.09.022

189. M. Ema, S. Taya, N. Yokotani, K. Sogawa, Y. Matsuda and Y. Fujii-Kuriyama. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Nat Acad Sci, 94(9), 4273-4278 (1997)
DOI: 10.1073/pnas.94.9.4273

190. G. L. Semenza and G. L. Wang. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 12(12), 5447-5454 (1992)
DOI: 10.1128/MCB.12.12.5447

191. C. Dong, Y. Wu, J. Yao, Y. Wang, Y. Yu, P. G. Rychahou and B. P. Zhou. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest, 122(4), 1469-1486 (2012)
DOI: 10.1172/JCI57349

192. S. Salceda and J. Caro. Hypoxia-inducible Factor 1α (HIF-1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions. J Biol Chem, 272(36), 22642-22647 (1997)
DOI: 10.1074/jbc.272.36.22642

193. S. V. Ivanov, K. Salnikow, A.V. Ivanova, L. Bai and M. I. Lerman. Hypoxic repression of STAT1 and its downstream genes by a pVHL/HIF-1 target DEC1/STRA13. Oncogen, 26(6), 802-812 (2006)
DOI: 10.1038/sj.onc.1209842

194. H. Chen, Y. Yan, T. L. Davidson, Y. Shinkai and M. Costa. Hypoxic Stress Induces Dimethylated Histone H3 Lysine 9 through Histone Methyltransferase G9a in Mammalian Cells. Cancer Res, 66(18), 9009-9016 (2006)
DOI: 10.1158/0008-5472.CAN-06-0101

195. S. H. Lee, J. Kim, W.-H Kim and Y. M. Lee. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogen, 28(2), 184-194 (2008)
DOI: 10.1038/onc.2008.377

196. Z. Wang, D. Yang, X. Zhang, T. Li, J. Li, Y. Tang and W. Le. Hypoxia-Induced Down-Regulation of Neprilysin by Histone Modification in Mouse Primary Cortical and Hippocampal Neurons. PLoS ONE, 6(4), e19229 (2011)
DOI: 10.1371/journal.pone.0019229

197. M. Lopez-Lazaro. Role of Oxygen in Cancer: Looking Beyond Hypoxia. Anti-Cancer Agent Med Chem, 9(5), 517-525 (2009)
DOI: 10.2174/187152009788451806

198. B. Paital. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J Biol Chem, 7(1), 110-127 (2016)
DOI: 10.4331/wjbc.v7.i1.110

199. B. Paital. Nutraceutical values of fish demand their ecological genetic studies: a short review. J Basic Appl Zool, 79(16), 1-11 (2018)
DOI: 10.1186/s41936-018-0030-x

200. B. Paital, A. Bal, A. G. Rivera-Ingraham and J.-H. Lignot. Increasing frequency of large-scale die-off events in the Bay of Bengal: reasoning, perceptive and future approaches. Ind J Geo-Mar Sci, 47(11), 2135-2146 (2018) nopr.niscair.res.in/handle/123456789/45314

201. B. Paital, D. Guru, P. Mohapatra, B. Panda, N. Parida, S. Rath and A. Srivastava. Ecotoxic impact assessment of graphene oxide on lipid peroxidation at mitochondrial level and redox modulation in fresh water fish Anabas testudineus. Chemosphere, 224, 796-804 (2019).
DOI: 10.1016/j.chemosphere.2019.02.156

202. R. Sullivan, G. C. Pare, L. J. Frederiksen, G. L. Semenza and C. H. Graham. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Therapeut, 7(7), 1961-1973 (2008)
DOI: 10.1158/1535-7163.MCT-08-0198

203. M. Mohme, S. Riethdorf and K. Pantel. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clinic Oncol, 14(3), 155-167 (2016)
DOI: 10.1038/nrclinonc.2016.144

204. M. S. Sosa, P. Bragado and J. A. Aguirre-Ghiso. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer, 14(9), 611-622 (2014)
DOI: 10.1038/nrc3793

205. G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre and J. A. Aguirre-Ghiso. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol, 19(2), 120-132 (2017)
DOI: 10.1038/ncb3465

206. M. S. Sosa, F. Parikh, A. G. Maia, Y. Estrada, A. Bosch, P. Bragado and J. A. Aguirre-Ghiso. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Comm, 6(1), 1-14 (2015)
DOI: 10.1038/ncomms7170

207. D. S. Das, A. Ray, A. Das, Y. Song, Z. Tian, B. Oronsky and K. C. Anderson. A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia, 30(11), 2187-2197 (2016)
DOI: 10.1038/leu.2016.96

208. H.J. Nam and S.H. Baek. Epigenetic regulation of the hypoxic response. Curr Opinion Physiol, 7, 1-8 (2018).
DOI: 10.1016/j.cophys.2018.11.007

209. K. B. Chiappinelli, C.A. Zahnow, N. Ahuja and S. B. Baylin. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res, 76(7), 1683-1689 (2016)
DOI: 10.1158/0008-5472.CAN-15-2125

210. D. M. Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 12(4), 252-264 (2012)
DOI: 10.1038/nrc3239

211. A. Ohta, R. Diwanji, R. Kini, M. Subramanian, A. Ohta and M. Sitkovsky. In vivo T Cell Activation in Lymphoid Tissues is inhibited in the Oxygen-Poor Microenvironment. Front Immunol, 2, 1-10 (2011)
DOI: 10.3389/fimmu.2011.00027

212. J. Sceneay, M. T. Chow, A. Chen, H. M. Halse, C. S. F. Wong, D. M. Andrews and A. Möller. Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer Res, 72(16), 3906-3911 (2012)
DOI: 10.1158/0008-5472.CAN-11-3873

213. C.A. Corzo, T. Lu, L. Condamine, M. J. Cotter, J.-I. Youn, P. Cheng and D.I. Gabrilovich. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 207(11), 2439-2453 (2010)
DOI: 10.1084/jem.20100587

214. M. Z. Noman, G. Desantis, B. Janji, M. Hasmim, S. Karray, P. Dessen and S. Chouaib. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med, 211(5), 781-790 (2014)
DOI: 10.1084/jem.20131916

215. K. E. Pauken, M. A. Sammons, P. M. Odorizzi, S. Manne, J. Godec, O. Khan and E. J. Wherry. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 354(6316), 1160-1165 (2016)
DOI: 10.1126/science.aaf2807

216. D. R. Sen, J. Kaminski, R. A. Barnitz, M. Kurachi, U. Gerdemann, K. B. Yates and W. N. Haining. The epigenetic landscape of T cell exhaustion. Science, 354(6316), 1165-1169 (2016)
DOI: 10.1126/science.aae0491

217. F. Falahi, M. van Kruchten, N. Martinet, G. Hospers and M. G. Rots. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res, 16(4), 1-11 (2014)
DOI: 10.1186/s13058-014-0412-z

218. L. Sigalotti, E. Fratta, S. Coral, and M. Maio. Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Therapeut, 142(3), 339-350 (2014)
DOI: 10.1016/j.pharmthera.2013.12.015

219. M. Maio, A. Covre, E. Fratta, A. M. Di Giacomo, P. Taverna, P. G. Natali and L. Sigalotti. Molecular Pathways: At the Crossroads of Cancer Epigenetics and Immunotherapy. Clinic Cancer Res, 21(18), 4040-4047 (2015)
DOI: 10.1158/1078-0432.CCR-14-2914

220. K. B. Chiappinelli, C. A. Zahnow, N. Ahuja and S. B. Baylin. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res, 76(7), 1683-1689 (2016)
DOI: 10.1158/0008-5472.CAN-15-2125

221. C. S. Tellez, M. J. Grimes, M. A. Picchi, Y. Liu, T. H. March, M. D. Reed and S. A. Belinsky. SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int J Cancer, 135(9), 2223-2231 (2014)
DOI: 10.1002/ijc.28865

222. M. Fardi, S. Solali and M. Farshdousti Hagh. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Gene Dis, 5(4), 304-311 (2018)
DOI: 10.1016/j.gendis.2018.06.003

223. C. H. Arrowsmith, C. Bountra, P. V. Fish, K. Lee and M. Schapira. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov, 11(5), 384-400 (2012)
DOI: 10.1038/nrd3674

224. W. Yan, J. G. Herman and M. Guo. Epigenome-based personalized medicine in human cancer. Epigenomic, 8(1), 119-133 (2016)
DOI: 10.2217/epi.15.84

225. S. R. Daigle, E. J. Olhava, C. A. Therkelsen, C. R. Majer, C. J. Sneeringer, J. Song and R. M. Pollock. Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor. Cancer Cell, 20(1), 53-65 (2011)
DOI: 10.1016/j.ccr.2011.06.009

226. D. Álvarez-Errico, R. Vento-Tormo, M. Sieweke and E. Ballestar. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol, 15(1), 7-17 (2015)
DOI: 10.1038/nri3777

227. S. Wee, D. Dhanak, H. Li, S. A. Armstrong, R. A. Copeland, R. Sims and L. Schweizer. Targeting epigenetic regulators for cancer therapy. ANNAL New York Acad of Sci, 1309(1), 30-36 (2014)
DOI: 10.1111/nyas.12356

228. J. Tan, X. Yang, L. Zhuang, X. Jiang, W. Chen, P. L. Lee and Q. Yu. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Gene Develop, 21(9), 1050-1063 (2007)
DOI: 10.1101/gad.1524107

229. EU Clinical Trials Register. www.clinicaltrialsregister.eu retrieved on 13.08.2019

230. Investigation of GSK2879552 in Subjects with Relapsed/Refractory Small Cell Lung Carcinoma. https://clinicaltrials.-gov/ct2/show/NCT02034123 retrieved on 13.08.2019

231. X. Lucas and S. Günther Targeting the BET family for the treatment of leukemia. Epigenomic, 6(2), 153-155 (2014)
DOI: 10.2217/epi.14.5

232. J. E. Delmore, G. C. Issa, M. E. Lemieux, P. B. Rahl, J. Shi, H. M. Jacobs and C. S. Mitsiades. BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc. Cell, 146(6), 904-917 (2011)
DOI: 10.1016/j.cell.2011.08.017

233. H. L.Yau, I. Ettayebi and D. D. De Carvalho. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trend Cell Biol, 29(1), 31-43. (2018)
DOI: 10.1016/j.tcb.2018.07.006

234. M. Esteller, J. Garcia-Foncillas, E. Andion, S. N. Goodman, O. F. Hidalgo, V. Vanaclocha and J. G. Herman. Inactivation of the DNA-Repair Gene MGMT and the Clinical Response of Gliomas to Alkylating Agents. New Engl J Med, 343(19), 1350-1354 (2000)
DOI: 10.1056/NEJM200011093431901

235. Y. Li, Y. Yang, Y. Lu, J. G. Herman, M. V. Brock, P. Zhao and M. Guo. Predictive value of CHFR and MLH1 methylation in human gastric cancer. Gastric Cancer, 18(2), 280-287 (2014)
DOI: 10.1007/s10120-014-0370-2

236. T. Taniguchi, M. Tischkowitz, N. Ameziane, S. V. Hodgson, C. G. Mathew, H. Joenje and A. D. D'Andrea. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med, 9(5), 568-574 (2003)
DOI: 10.1038/nm852

237. M. Tanaka, P. Chang, Y. Li, D. Li, M. Overman and D. M. Maru, C. Eng. Association of CHFR Promoter Methylation with Disease Recurrence in Locally Advanced Colon Cancer. Clinic Cancer Res, 17(13), 4531-4540 (2011)
DOI: 10.1158/1078-0432.CCR-10-0763

238. J. Veeck, S. Ropero, F. Setien, E. Gonzalez-Suarez, A. Osorio, J. Benitez and M. Esteller. BRCA1 CpG Island Hypermethylation Predicts Sensitivity to Poly (Adenosine Diphosphate) - Ribose Polymerase Inhibitors. J Clinic Oncol, 28(29), e563-e564 (2010)
DOI: 10.1200/JCO.2010.30.1010

239. G. Strathdee, M. J. MacKean, M. Illand and R. Brown. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene, 18(14), 2335-2341 (1999)
DOI: 10.1038/sj.onc.1202540

240. E. Dejeux, J. Rønneberg, H. Solvang, I. Bukholm, S. Geisler, T. Aas and J. Tost. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer, 9(68), 1-13 (2010)
DOI: 10.1186/1476-4598-9-68

241. J.-H Lee, M.-J Kang, H.-Y Han, M.-G Lee, S.-I. Jeong, B.-K Ryu and S.-G Chi. Epigenetic Alteration of PRKCDBP in Colorectal Cancers and Its Implication in Tumor Cell Resistance to TNF -Induced Apoptosis. Clinic Cancer Res, 17(24), 7551-7562 (2011)
DOI: 10.1158/1078-0432.CCR-11-1026

242. J. L. Ramirez, R. Rosell, M. Taron, M. Sanchez-Ronco, V. Alberola, R. de las Peñas and S. Catot. 14-3-3σ Methylation in Pre-treatment Serum Circulating DNA of Cisplatin-Plus-Gemcitabine-Treated Advanced Non-Small-Cell Lung Cancer Patients Predicts Survival: The Spanish Lung Cancer Group. J Clinic Oncol, 23(36), 9105-9112 (2005)
DOI: 10.1200/JCO.2005.02.2905

243. M. P.A. Ebert, M. Tänzer, B. Balluff, E. Burgermeister, A. K. Kretzschmar, D. J. Hughes and R. M. Schmid. TFAP2E-DKK4and Chemoresistance in Colorectal Cancer. New Engl J Med, 366(1), 44-53 (2012)
DOI: 10.1056/NEJMoa1009473

244. V. F. Chekhun, G. I. Kulik, O. V. Yurchenko, V. P. Tryndyak, I. N. Todor, L. S. Luniv and I.P. Pogribny. Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett, 231(1), 87-93 (2006)
DOI: 10.1016/j.canlet.2005.01.038

245. M. S. Soengas, P. Capodieci, D. Polsky, J. Mora, M. Esteller, X. Opitz-Araya and S. W. Lowe. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 409(6817), 207-211 (2001)
DOI: 10.1038/35051606

246. E. Iorns, N. C. Turner, R. Elliott, N. Syed, O. Garrone, M. Gasco and A. Ashworth. Identification of CDK10 as an Important Determinant of Resistance to Endocrine Therapy for Breast Cancer. Cancer Cell, 13(2), 91-104 (2008)
DOI: 10.1016/j.ccr.2008.01.001

247. I. Ibanez de Caceres, M. Cortes-Sempere, C. Moratilla, R. Machado-Pinilla, V. Rodriguez-Fanjul, C. Manguán-García and R. Perona. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene, 29(11), 1681-1690 (2009)
DOI: 10.1038/onc.2009.454

248. Faller, J. William Rafferty, Mairin, Hegarty, Shauna, Gremel, Gabriela, Ryan, Denise, Fraga, F. Mario Esteller, Manel, Dervan, A. Peter Gallagher and M. William. Metallothionein 1E is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis. Melanoma Res, 20(5), 392-400 (2010)
DOI: 10.1097/CMR.0b013e32833d32a6

249. L. Ai, W.-J. Kim, B. Demircan, L. M. Dyer, K. J. Bray, R. R. Skehan and K. D. Brown. The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis, 29(3), 510-518 (2008)
DOI: 10.1093/carcin/bgm280

250. L. Shen, Y. Kondo, S. Ahmed, Y. Boumber, K. Konishi, Y. Guo and J.-P. J. Issa. Drug Sensitivity Prediction by CpG Island Methylation Profile in the NCI-60 Cancer Cell Line Panel. Cancer Res, 67(23), 11335-11343 (2007)
DOI: 10.1158/0008-5472.CAN-07-1502

Key Words: Epigenetics, Cancer, Hypoxia, DNA Methylation, Histone Modifications, miRNAs, Chromatin.

Send correspondence to: Ramalingam Nirmaladevi, Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India, Tel.: 91-9976152000, E-mail: nirmaladevi.saravanan32@gmail.com