[Frontiers in Bioscience, Landmark, 25, 201-228, Jan 1, 2020]

Iodothyronine deiodinases and reduced sensitivity to thyroid hormones

Rosa Maria Paragliola1, Andrea Corsello1, Paola Concolino2, Francesca Ianni1, Giampaolo Papi1, Alfredo Pontecorvi1, Salvatore Maria Corsello1

1Endocrinology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma – Università Cattolica del Sacro Cuore, 2Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma


1. Abstract
2. Introduction
3. Iodothyronine deiodinases
    3.1. Iodothyronine deiodinases: general overview
    3.2. Iodothyronine deiodinase activity and the regulation of negative feedback loop
4. Impaired iodothyronine deiodinase activity: a possible model of “syndrome of reduced sensitivity to thyroid hormone”
    4.1. Experimental models of impaired iodothyronine deiodinase activity: targeted disruption of DIO genes
    4.2. Iodothyronine deiodinase defects in the syndromes of reduced sensitivity to THs
    4.3. LT4 replacement therapy and iodothyronine deiodinase polymorphisms
5. Conclusions
6. Acknowledgment
7. References


Iodothyronine deiodinases are selenoproteins that regulate thyroid hormone metabolism. Of the three types of deiodinases, type 2 is the major regulator of intracellular triiodothyronine concentration in both the hypothalamus and pituitary, and therefore the major regulator of thyrotropin secretion. A defect in iodothyronine deiodinase activity can lead to a reduced sensitivity to thyroid hormones action and the most recent literature includes these defects in the so-called “syndromes of reduced sensitivity to thyroid hormones”. To date, the pathogenic variants of the selenocysteine insertion sequence-binding protein 2 (SECISBP2) gene are the first and only inherited disorder of iodothyronine metabolism described. Moreover, there is a growing interest in understanding the possible role of polymorphisms of DIO1 and DIO2 genes in some pathological conditions and in determining the requirement of levothyroxine replacement and the role of combined levothyroxine-liothyronine therapy in carrying subjects affected by hypothyroidism and who need replacement therapy. Results on this topic are still conflicting and more studies are needed to assess the efficacy of combined levothyroxine-liothyronine replacement therapy in this subset of patients.


1. R. Mullur, Y. Y. Liu and G. A. Brent: Thyroid hormone regulation of metabolism. Physiol Rev, 94(2), 355-82 (2014)
DOI: 10.1152/physrev.00030.2013
PMid:24692351 PMCid:PMC4044302

2. T. M. Ortiga-Carvalho, A. R. Sidhaye and F. E. Wondisford: Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol, 10(10), 582-91 (2014)
DOI: 10.1038/nrendo.2014.143
PMid:25135573 PMCid:PMC4578869

3. S. Y. Cheng, J. L. Leonard and P. J. Davis: Molecular aspects of thyroid hormone actions. Endocr Rev, 31(2), 139-70 (2010)
DOI: 10.1210/er.2009-0007
PMid:20051527 PMCid:PMC2852208

4. M. A. Lazar: Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev, 14(2), 184-93 (1993)
DOI: 10.1210/edrv-14-2-184
DOI: 10.1210/er.14.2.184

5. R. C. Ribeiro, P. J. Kushner and J. D. Baxter: The nuclear hormone receptor gene superfamily. Annu Rev Med, 46, 443-53 (1995)
DOI: 10.1146/annurev.med.46.1.443

6. G. R. Williams: Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol, 20(22), 8329-42 (2000)
DOI: 10.1128/MCB.20.22.8329-8342.2000
PMid:11046130 PMCid:PMC102140

7. K. Moriyama, H. Yamamoto, K. Futawaka, A. Atake, M. Kasahara and T. Tagami: Molecular characterization of human thyroid hormone receptor beta isoform 4. Endocr Res, 41(1), 34-42 (2016)
DOI: 10.3109/07435800.2015.1066801

8. T. Mitsuhashi, G. E. Tennyson and V. M. Nikodem: Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc Natl Acad Sci U S A., 85(16), 5804-8 (1988)
DOI: 10.1073/pnas.85.16.5804
PMid:2901090 PMCid:PMC281853

9. F. Casas, M. Busson, S. Grandemange, P. Seyer, A. Carazo, L. Pessemesse, C. Wrutniak-Cabello and G. Cabello: Characterization of a novel thyroid hormone receptor alpha variant involved in the regulation of myoblast differentiation. Mol Endocrinol, 20(4), 749-63 (2006)
DOI: 10.1210/me.2005-0074

10. D. J. Bradley, H. C. Towle and W. S. Young, 3rd: Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci, 12(6), 2288-302 (1992)
DOI: 10.1523/JNEUROSCI.12-06-02288.1992

11. J. Jonklaas, B. Davidson, S. Bhagat and S. J. Soldin: Triiodothyronine levels in athyreotic individuals during levothyroxine therapy. JAMA, 299(7), 769-77 (2008)
DOI: 10.1001/jama.299.7.769

12. P. J. Davis, F. B. Davis, H. Y. Lin, S. A. Mousa, M. Zhou and M. K. Luidens: Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. Am J Physiol Endocrinol Metab, 297(6), E1238-46 (2009)
DOI: 10.1152/ajpendo.00480.2009

13. A. C. Schroeder and M. L. Privalsky: Thyroid hormones, t3 and t4, in the brain. Front Endocrinol (Lausanne), 5, 40 (2014)
DOI: 10.3389/fendo.2014.00040
PMid:24744751 PMCid:PMC3978256

14. G. Morreale de Escobar, M. J. Obregon and F. Escobar del Rey: Role of thyroid hormone during early brain development. Eur J Endocrinol, 151 Suppl 3, U25-37 (2004)
DOI: 10.1530/eje.0.151u025

15. G. Canettieri, A. Franchi, M. D. Guardia, I. Morantte, M. G. Santaguida, J. W. Harney, P. R. Larsen and M. Centanni: Activation of thyroid hormone is transcriptionally regulated by epidermal growth factor in human placenta-derived JEG3 cells. Endocrinology, 149(2), 695-702 (2008)
DOI: 10.1210/en.2007-0779
PMid:17991726 PMCid:PMC2219305

16. G. Canettieri, A. Franchi, R. Sibilla, E. Guzman and M. Centanni: Functional characterisation of the CRE/TATA box unit of type 2 deiodinase gene promoter in a human choriocarcinoma cell line. J Mol Endocrinol, 33(1), 51-8 (2004)
DOI: 10.1677/jme.0.0330051

17. L. Sabatino, G. Iervasi, P. Ferrazzi, D. Francesconi and I. J. Chopra: A study of iodothyronine 59-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci., 68(2), 191-202 (2000)
DOI: 10.1016/S0024-3205(00)00929-2

18. C. Virili and M. Centanni: "With a little help from my friends" - The role of microbiota in thyroid hormone metabolism and enterohepatic recycling. Mol Cell Endocrinol, 458, 39-43 (2017)
DOI: 10.1016/j.mce.2017.01.053

19. M. L. Rosene, G. Wittmann, R. Arrojo e Drigo, P. S. Singru, R. M. Lechan and A. C. Bianco: Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology, 151(12), 5961-70 (2010)
DOI: 10.1210/en.2010-0553
PMid:20926587 PMCid:PMC2999495

20. D. Villar, S. M. Rhind, P. Dicks, S. R. McMillen, F. Nicol and J. R. Arthur: Effect of propylthiouracil-induced hypothyroidism on thyroid hormone profiles and tissue deiodinase activity in cashmere goats. Small Ruminant Research, 29(3), 317-324 (1998)
DOI: 10.1016/S0921-4488(97)00130-2

21. E. M. de Vries, E. Fliers and A. Boelen: The molecular basis of the non-thyroidal illness syndrome. J Endocrinol, 225(3), R67-81 (2015)
DOI: 10.1530/JOE-15-0133

22. A. C. Bianco and R. R. da Conceicao: The Deiodinase Trio and Thyroid Hormone Signaling. Methods Mol Biol, 1801, 67-83 (2018)
DOI: 10.1007/978-1-4939-7902-8_8

23. T. M. Ortiga-Carvalho, M. I. Chiamolera, C. C. Pazos-Moura and F. E. Wondisford: Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol, 6(3), 1387-428 (2016)
DOI: 10.1002/cphy.c150027

24. J. Kohrle and H. Biebermann: 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev, 40(2), 602-630 (2019)
DOI: 10.1210/er.2018-00182

25. R. Senese, P. de Lange, G. Petito, M. Moreno, F. Goglia and A. Lanni: 3,5-Diiodothyronine: A Novel Thyroid Hormone Metabolite and Potent Modulator of Energy Metabolism. Front Endocrinol (Lausanne), 9, 427 (2018)
DOI: 10.3389/fendo.2018.00427
PMid:30090086 PMCid:PMC6068267

26. G. D. Sagar, B. Gereben, I. Callebaut, J. P. Mornon, A. Zeold, C. Curcio-Morelli, J. W. Harney, C. Luongo, M. A. Mulcahey, P. R. Larsen, S. A. Huang and A. C. Bianco: The thyroid hormone-inactivating deiodinase functions as a homodimer. Mol Endocrinol, 22(6), 1382-93 (2008)
DOI: 10.1210/me.2007-0490
PMid:18356288 PMCid:PMC2422829

27. S. Benvenga and F. Guarneri: Deiodinases share an evolutionarily conserved thyroid hormone-binding motif. Front Biosci (Landmark Ed), 23, 2195-2203 (2018)
DOI: 10.2741/4699

28. B. Gereben, A. M. Zavacki, S. Ribich, B. W. Kim, S. A. Huang, W. S. Simonides, A. Zeold and A. C. Bianco: Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev, 29(7), 898-938 (2008)
DOI: 10.1210/er.2008-0019
PMid:18815314 PMCid:PMC2647704

29. A. L. Maia, I. M. Goemann, E. L. Meyer and S. M. Wajner: Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease. J Endocrinol, 209(3), 283-97 (2011)
DOI: 10.1530/JOE-10-0481

30. S. M. Abdalla and A. C. Bianco: Defending plasma T3 is a biological priority. Clin Endocrinol (Oxf), 81(5), 633-41 (2014)
DOI: 10.1111/cen.12538
PMid:25040645 PMCid:PMC4699302

31. A. C. Bianco, D. Salvatore, B. Gereben, M. J. Berry and P. R. Larsen: Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev, 23(1), 38-89 (2002)
DOI: 10.1210/edrv.23.1.0455

32. J. M. Bates, D. L. St Germain and V. A. Galton: Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology, 140(2), 844-51 (1999)
DOI: 10.1210/endo.140.2.6537

33. E. A. McAninch and A. C. Bianco: Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci, 1311, 77-87 (2014)
DOI: 10.1111/nyas.12374
PMid:24697152 PMCid:PMC4451242

34. L. J. Lartey, J. P. Werneck-de-Castro, O. S. I, T. G. Unterman and A. C. Bianco: Coupling between Nutrient Availability and Thyroid Hormone Activation. J Biol Chem, 290(51), 30551-61 (2015)
DOI: 10.1074/jbc.M115.665505
PMid:26499800 PMCid:PMC4683275

35. S. Barez-Lopez, D. Bosch-Garcia, D. Gomez-Andres, I. Pulido-Valdeolivas, A. Montero-Pedrazuela, M. J. Obregon and A. Guadano-Ferraz: Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS One, 9(8), e103857 (2014)
DOI: 10.1371/journal.pone.0103857
PMid:25083788 PMCid:PMC4118963

36. M. Dentice, A. Marsili, R. Ambrosio, O. Guardiola, A. Sibilio, J. H. Paik, G. Minchiotti, R. A. DePinho, G. Fenzi, P. R. Larsen and D. Salvatore: The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest, 120(11), 4021-30 (2010)
DOI: 10.1172/JCI43670
PMid:20978344 PMCid:PMC2964991

37. S. Jo, I. Kallo, Z. Bardoczi, R. Arrojo e Drigo, A. Zeold, Z. Liposits, A. Oliva, V. P. Lemmon, J. L. Bixby, B. Gereben and A. C. Bianco: Neuronal hypoxia induces Hsp40-mediated nuclear import of type 3 deiodinase as an adaptive mechanism to reduce cellular metabolism. J Neurosci, 32(25), 8491-500 (2012)
DOI: 10.1523/JNEUROSCI.6514-11.2012
PMid:22723689 PMCid:PMC3752066

38. E. K. Alexander, E. Marqusee, J. Lawrence, P. Jarolim, G. A. Fischer and P. R. Larsen: Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med, 351(3), 241-9 (2004)
DOI: 10.1056/NEJMoa040079

39. S. A. Huang and A. C. Bianco: Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab, 4(3), 148-55 (2008)
DOI: 10.1038/ncpendmet0727
PMid:18212764 PMCid:PMC3133953

40. M. C. Medina, J. Molina, Y. Gadea, A. Fachado, M. Murillo, G. Simovic, A. Pileggi, A. Hernandez, H. Edlund and A. C. Bianco: The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human beta-cells and its targeted inactivation impairs insulin secretion. Endocrinology, 152(10), 3717-27 (2011)
DOI: 10.1210/en.2011-1210
PMid:21828183 PMCid:PMC3176649

41. W. S. Simonides, M. A. Mulcahey, E. M. Redout, A. Muller, M. J. Zuidwijk, T. J. Visser, F. W. Wassen, A. Crescenzi, W. S. da-Silva, J. Harney, F. B. Engel, M. J. Obregon, P. R. Larsen, A. C. Bianco and S. A. Huang: Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest, 118(3), 975-83 (2008)
DOI: 10.1172/JCI32824
PMid:18259611 PMCid:PMC2230657

42. E. L. Olivares, M. P. Marassi, R. S. Fortunato, A. C. da Silva, R. H. Costa-e-Sousa, I. G. Araujo, E. C. Mattos, M. O. Masuda, M. A. Mulcahey, S. A. Huang, A. C. Bianco and D. P. Carvalho: Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology, 148(10), 4786-92 (2007)
DOI: 10.1210/en.2007-0043

43. M. A. Maynard, A. Marino-Enriquez, J. A. Fletcher, D. M. Dorfman, C. P. Raut, L. Yassa, C. Guo, Y. Wang, C. Dorfman, H. A. Feldman, M. C. Frates, H. Song, R. H. Jugo, T. Taguchi, J. M. Hershman, P. R. Larsen and S. A. Huang: Thyroid hormone inactivation in gastrointestinal stromal tumors. N Engl J Med, 370(14), 1327-34 (2014)
DOI: 10.1056/NEJMoa1308893
PMid:24693892 PMCid:PMC4186889

44. C. Luongo, L. Trivisano, F. Alfano and D. Salvatore: Type 3 deiodinase and consumptive hypothyroidism: a common mechanism for a rare disease. Front Endocrinol (Lausanne), 4, 115 (2013)
DOI: 10.3389/fendo.2013.00115
PMid:24027558 PMCid:PMC3761349

45. K. Bessho, Y. Etani, H. Ichimori, Y. Miyoshi, N. Namba, A. Yoneda, T. Ooue, T. Chihara, E. Morii, T. Aoki, M. Murakami, S. Mushiake and K. Ozono: Increased type 3 iodothyronine deiodinase activity in a regrown hepatic hemangioma with consumptive hypothyroidism. Eur J Pediatr, 169(2), 215-21 (2010)
DOI: 10.1007/s00431-009-1009-x

46. F. Mouat, H. M. Evans, W. S. Cutfield, P. L. Hofman and C. Jefferies: Massive hepatic hemangioendothelioma and consumptive hypothyroidism. J Pediatr Endocrinol Metab, 21(7), 701-3 (2008)
DOI: 10.1515/JPEM.2008.21.7.701

47. F. Torino, A. Barnabei, R. Paragliola, R. Baldelli, M. Appetecchia and S. M. Corsello: Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid, 23(11), 1345-66 (2013)
DOI: 10.1089/thy.2013.0241

48. A. L. Maia, B. W. Kim, S. A. Huang, J. W. Harney and P. R. Larsen: Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest, 115(9), 2524-33 (2005)
DOI: 10.1172/JCI25083
PMid:16127464 PMCid:PMC1190373

49. M. H. Warner and G. J. Beckett: Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol, 205(1), 1-13 (2010)
DOI: 10.1677/JOE-09-0412
DOI: 10.1677/joe.0.0770001

50. A. L. Maia: Effect of 3,5,3'-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice. Endocrinology, 136(11), 4842-4849 (1995)
DOI: 10.1210/endo.136.11.7588215

51. B. Gereben, C. Goncalves, J. W. Harney, P. R. Larsen and A. C. Bianco: Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol Endocrinol, 14(11), 1697-708 (2000)
DOI: 10.1210/mend.14.11.0558

52. P. Laurberg, H. Vestergaard, S. Nielsen, S. E. Christensen, T. Seefeldt, K. Helleberg and K. M. Pedersen: Sources of circulating 3,5,3'-triiodothyronine in hyperthyroidism estimated after blocking of type 1 and type 2 iodothyronine deiodinases. J Clin Endocrinol Metab, 92(6), 2149-56 (2007)
DOI: 10.1210/jc.2007-0178

53. A. Kadar, E. Sanchez, G. Wittmann, P. S. Singru, T. Fuzesi, A. Marsili, P. R. Larsen, Z. Liposits, R. M. Lechan and C. Fekete: Distribution of hypophysiotropic thyrotropin-releasing hormone (TRH)-synthesizing neurons in the hypothalamic paraventricular nucleus of the mouse. J Comp Neurol, 518(19), 3948-61 (2010)
DOI: 10.1002/cne.22432
PMid:20737594 PMCid:PMC2932658

54. T. P. Segerson, J. Kauer, H. C. Wolfe, H. Mobtaker, P. Wu, I. M. Jackson and R. M. Lechan: Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science, 238(4823), 78-80 (1987)
DOI: 10.1126/science.3116669

55. E. D. Abel, R. S. Ahima, M. E. Boers, J. K. Elmquist and F. E. Wondisford: Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest, 107(8), 1017-23 (2001)
DOI: 10.1172/JCI10858
PMid:11306605 PMCid:PMC199552

56. A. A. Nikrodhanond, T. M. Ortiga-Carvalho, N. Shibusawa, K. Hashimoto, X. H. Liao, S. Refetoff, M. Yamada, M. Mori and F. E. Wondisford: Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. J Biol Chem, 281(8), 5000-7 (2006)
DOI: 10.1074/jbc.M511530200

57. F. R. Crantz and P. R. Larsen: Rapid thyroxine to 3,5,3'-triiodothyronine conversion and nuclear 3,5,3'-triiodothyronine binding in rat cerebral cortex and cerebellum. J Clin Invest, 65(4), 935-8 (1980)
DOI: 10.1172/JCI109749
PMid:7358853 PMCid:PMC434484

58. P. Egri, C. Fekete, A. Denes, D. Reglodi, H. Hashimoto, B. D. Fulop and B. Gereben: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice. Endocrinology, 157(6), 2356-66 (2016)
DOI: 10.1210/en.2016-1043

59. M. A. Christoffolete, R. Ribeiro, P. Singru, C. Fekete, W. S. da Silva, D. F. Gordon, S. A. Huang, A. Crescenzi, J. W. Harney, E. C. Ridgway, P. R. Larsen, R. M. Lechan and A. C. Bianco: Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology, 147(4), 1735-43 (2006)
DOI: 10.1210/en.2005-1300

60. E. D. R. Arrojo, T. L. Fonseca, J. P. Werneck-de-Castro and A. C. Bianco: Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta, 1830(7), 3956-64 (2013)
DOI: 10.1016/j.bbagen.2012.08.019
PMid:22967761 PMCid:PMC4979226

61. M. L. Sugrue, K. R. Vella, C. Morales, M. E. Lopez and A. N. Hollenberg: The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology, 151(2), 793-801 (2010)
DOI: 10.1210/en.2009-0976
PMid:20032051 PMCid:PMC2817611

62. L. J. De Groot: Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit Care Clin, 22(1), 57-86, vi (2006)
DOI: 10.1016/j.ccc.2005.10.001

63. C. Fekete, B. Gereben, M. Doleschall, J. W. Harney, J. M. Dora, A. C. Bianco, S. Sarkar, Z. Liposits, W. Rand, C. Emerson, I. Kacskovics, P. R. Larsen and R. M. Lechan: Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology, 145(4), 1649-55 (2004)
DOI: 10.1210/en.2003-1439

64. Y. Debaveye, B. Ellger, L. Mebis, V. M. Darras and G. Van den Berghe: Regulation of tissue iodothyronine deiodinase activity in a model of prolonged critical illness. Thyroid, 18(5), 551-60 (2008)
DOI: 10.1089/thy.2007.0287

65. J. Kwakkel, O. Chassande, H. C. van Beeren, W. M. Wiersinga and A. Boelen: Lacking thyroid hormone receptor beta gene does not influence alterations in peripheral thyroid hormone metabolism during acute illness. J Endocrinol, 197(1), 151-8 (2008)
DOI: 10.1677/JOE-07-0601

66. M. J. Schneider, S. N. Fiering, S. E. Pallud, A. F. Parlow, D. L. St Germain and V. A. Galton: Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol, 15(12), 2137-48 (2001)
DOI: 10.1210/mend.15.12.0740

67. C. Luongo, C. Martin, K. Vella, A. Marsili, R. Ambrosio, M. Dentice, J. W. Harney, D. Salvatore, A. M. Zavacki and P. R. Larsen: The selective loss of the type 2 iodothyronine deiodinase in mouse thyrotrophs increases basal TSH but blunts the thyrotropin response to hypothyroidism. Endocrinology, 156(2), 745-54 (2015)
DOI: 10.1210/en.2014-1698
PMid:25456070 PMCid:PMC4298316

68. M. A. Christoffolete, R. Arrojo e Drigo, F. Gazoni, S. M. Tente, V. Goncalves, B. S. Amorim, P. R. Larsen, A. C. Bianco and A. M. Zavacki: Mice with impaired extrathyroidal thyroxine to 3,5,3'-triiodothyronine conversion maintain normal serum 3,5,3'-triiodothyronine concentrations. Endocrinology, 148(3), 954-60 (2007)
DOI: 10.1210/en.2006-1042

69. V. A. Galton, M. J. Schneider, A. S. Clark and D. L. St Germain: Life without thyroxine to 3,5,3'-triiodothyronine conversion: studies in mice devoid of the 5'-deiodinases. Endocrinology, 150(6), 2957-63 (2009)
DOI: 10.1210/en.2008-1572
PMid:19196796 PMCid:PMC2689801

70. C. N. Walpita, A. D. Crawford, E. D. Janssens, S. Van der Geyten and V. M. Darras: Type 2 iodothyronine deiodinase is essential for thyroid hormone-dependent embryonic development and pigmentation in zebrafish. Endocrinology, 150(1), 530-9 (2009)
DOI: 10.1210/en.2008-0457

71. M. J. Schneider, S. N. Fiering, B. Thai, S. Y. Wu, E. St Germain, A. F. Parlow, D. L. St Germain and V. A. Galton: Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology, 147(1), 580-9 (2006)
DOI: 10.1210/en.2005-0739

72. S. Refetoff, J. H. Bassett, P. Beck-Peccoz, J. Bernal, G. Brent, K. Chatterjee, L. J. De Groot, A. M. Dumitrescu, J. L. Jameson, P. A. Kopp, Y. Murata, L. Persani, J. Samarut, R. E. Weiss, G. R. Williams and P. M. Yen: Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid, 24(3), 407-9 (2014)
DOI: 10.1089/thy.2013.3393.nomen
PMid:24588711 PMCid:PMC3950730

73. S. Refetoff, L. T. DeWind and L. J. DeGroot: Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab, 27(2), 279-94 (1967)
DOI: 10.1210/jcem-27-2-279

74. S. Refetoff, R. E. Weiss and S. J. Usala: The syndromes of resistance to thyroid hormone. Endocr Rev, 14(3), 348-99 (1993)
DOI: 10.1210/edrv-14-3-348
DOI: 10.1210/er.14.3.348

75. S. J. Usala, G. E. Tennyson, A. E. Bale, R. W. Lash, N. Gesundheit, F. E. Wondisford, D. Accili, P. Hauser and B. D. Weintraub: A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds. J Clin Invest, 85(1), 93-100 (1990)
DOI: 10.1172/JCI114438
PMid:2153155 PMCid:PMC296391

76. E. Bochukova, N. Schoenmakers, M. Agostini, E. Schoenmakers, O. Rajanayagam, J. M. Keogh, E. Henning, J. Reinemund, E. Gevers, M. Sarri, K. Downes, A. Offiah, A. Albanese, D. Halsall, J. W. Schwabe, M. Bain, K. Lindley, F. Muntoni, F. Vargha-Khadem, M. Dattani, I. S. Farooqi, M. Gurnell and K. Chatterjee: A mutation in the thyroid hormone receptor alpha gene. N Engl J Med, 366(3), 243-9 (2012)
DOI: 10.1056/NEJMoa1110296

77. A. M. Dumitrescu, X. H. Liao, T. B. Best, K. Brockmann and S. Refetoff: A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet, 74(1), 168-75 (2004)
DOI: 10.1086/380999
PMid:14661163 PMCid:PMC1181904

78. E. C. H. Friesema, A. Grueters, H. Biebermann, H. Krude, A. von Moers, M. Reeser, T. G. Barrett, E. E. Mancilla, J. Svensson, M. H. A. Kester, G. G. J. M. Kuiper, S. Balkassmi, A. G. Uitterlinden, J. Koehrle, P. Rodien, A. P. Halestrap and T. J. Visser: Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. The Lancet, 364(9443), 1435-1437 (2004)
DOI: 10.1016/S0140-6736(04)17226-7

79. A. A. van Mullem, A. L. M. van Gucht, W. E. Visser, M. E. Meima, R. P. Peeters and T. J. Visser: Effects of thyroid hormone transporters MCT8 and MCT10 on nuclear activity of T3. Mol Cell Endocrinol, 437, 252-260 (2016)
DOI: 10.1016/j.mce.2016.07.037

80. J. P. Stohn, M. E. Martinez, K. Matoin, B. Morte, J. Bernal, V. A. Galton, D. St Germain and A. Hernandez: MCT8 Deficiency in Male Mice Mitigates the Phenotypic Abnormalities Associated With the Absence of a Functional Type 3 Deiodinase. Endocrinology, 157(8), 3266-77 (2016)
DOI: 10.1210/en.2016-1162
PMid:27254003 PMCid:PMC4967121

81. X. H. Liao, C. Di Cosmo, A. M. Dumitrescu, A. Hernandez, J. Van Sande, D. L. St Germain, R. E. Weiss, V. A. Galton and S. Refetoff: Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes. Endocrinology, 152(3), 1180-91 (2011)
DOI: 10.1210/en.2010-0900
PMid:21285310 PMCid:PMC3040057

82. J. Muller and H. Heuer: Understanding the hypothalamus-pituitary-thyroid axis in mct8 deficiency. Eur Thyroid J, 1(2), 72-9 (2012)
DOI: 10.1159/000339474
PMid:24783000 PMCid:PMC3821472

83. E. K. Wirth, E. Rijntjes, F. Meyer, J. Kohrle and U. Schweizer: High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase. Eur Thyroid J, 4(Suppl 1), 87-91 (2015)
DOI: 10.1159/000381021
PMid:26601078 PMCid:PMC4640264

84. R. J. Koenig: Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid, 15(8), 835-40 (2005)
DOI: 10.1089/thy.2005.15.835

85. A. M. Dumitrescu, X. H. Liao, M. S. Abdullah, J. Lado-Abeal, F. A. Majed, L. C. Moeller, G. Boran, L. Schomburg, R. E. Weiss and S. Refetoff: Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet, 37(11), 1247-52 (2005)
DOI: 10.1038/ng1654

86. A. Lescure, C. Allmang, K. Yamada, P. Carbon and A. Krol: cDNA cloning, expression pattern and RNA binding analysis of human selenocysteine insertion sequence (SECIS) binding protein 2. Gene, 291(1-2), 279-85 (2002)
DOI: 10.1016/S0378-1119(02)00629-7

87. A. M. Dumitrescu and S. Refetoff: Novel biological and clinical aspects of thyroid hormone metabolism. Endocr Dev, 10, 127-39 (2007)
DOI: 10.1159/000106824

88. S. Refetoff and A. M. Dumitrescu: Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab, 21(2), 277-305 (2007)
DOI: 10.1016/j.beem.2007.03.005

89. L. Schomburg, A. M. Dumitrescu, X. H. Liao, B. Bin-Abbas, J. Hoeflich, J. Kohrle and S. Refetoff: Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with SBP2 gene mutations. Thyroid, 19(3), 277-81 (2009)
DOI: 10.1089/thy.2008.0397
PMid:19265499 PMCid:PMC2858371

90. A. M. Dumitrescu, C. Di Cosmo, X. H. Liao, R. E. Weiss and S. Refetoff: The syndrome of inherited partial SBP2 deficiency in humans. Antioxid Redox Signal, 12(7), 905-20 (2010)
DOI: 10.1089/ars.2009.2892
PMid:19769464 PMCid:PMC2864657

91. C. Di Cosmo, N. McLellan, X. H. Liao, K. K. Khanna, R. E. Weiss, L. Papp and S. Refetoff: Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J Clin Endocrinol Metab, 94(10), 4003-9 (2009)
DOI: 10.1210/jc.2009-0686
PMid:19602558 PMCid:PMC2758735

92. M. F. Azevedo, G. B. Barra, L. A. Naves, L. F. Ribeiro Velasco, P. Godoy Garcia Castro, L. C. de Castro, A. A. Amato, A. Miniard, D. Driscoll, L. Schomburg and F. de Assis Rocha Neves: Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab, 95(8), 4066-71 (2010)
DOI: 10.1210/jc.2009-2611

93. B. Moghadaszadeh, N. Petit, C. Jaillard, M. Brockington, S. Quijano Roy, L. Merlini, N. Romero, B. Estournet, I. Desguerre, D. Chaigne, F. Muntoni, H. Topaloglu and P. Guicheney: Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet, 29(1), 17-8 (2001)
DOI: 10.1038/ng713

94. E. Schoenmakers, M. Agostini, C. Mitchell, N. Schoenmakers, L. Papp, O. Rajanayagam, R. Padidela, L. Ceron-Gutierrez, R. Doffinger, C. Prevosto, J. Luan, S. Montano, J. Lu, M. Castanet, N. Clemons, M. Groeneveld, P. Castets, M. Karbaschi, S. Aitken, A. Dixon, J. Williams, I. Campi, M. Blount, H. Burton, F. Muntoni, D. O'Donovan, A. Dean, A. Warren, C. Brierley, D. Baguley, P. Guicheney, R. Fitzgerald, A. Coles, H. Gaston, P. Todd, A. Holmgren, K. K. Khanna, M. Cooke, R. Semple, D. Halsall, N. Wareham, J. Schwabe, L. Grasso, P. Beck-Peccoz, A. Ogunko, M. Dattani, M. Gurnell and K. Chatterjee: Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest, 120(12), 4220-35 (2010)
DOI: 10.1172/JCI43653
PMid:21084748 PMCid:PMC2993594

95. T. Hamajima, Y. Mushimoto, H. Kobayashi, Y. Saito and K. Onigata: Novel compound heterozygous mutations in the SBP2 gene: characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur J Endocrinol, 166(4), 757-64 (2012)
DOI: 10.1530/EJE-11-0812

96. G. Catli, H. Fujisawa, O. Kirbiyik, M. S. Mimoto, P. Gencpinar, T. R. Ozdemir, B. N. Dundar and A. M. Dumitrescu: A Novel Homozygous Selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2, SBP2) Gene Mutation in a Turkish Boy. Thyroid (2018)
DOI: 10.1089/thy.2018.0015

97. L. H. Duntas: On the trail of the SBP2-syndrome: clues in a Daedalean maze. J Clin Endocrinol Metab, 95(8), 3618-21 (2010)
DOI: 10.1210/jc.2010-1325

98. H. F. Escobar-Morreale, M. J. Obregon, F. Escobar del Rey and G. Morreale de Escobar: Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest, 96(6), 2828-38 (1995)
DOI: 10.1172/JCI118353
PMid:8675653 PMCid:PMC185993

99. H. F. Escobar-Morreale, F. E. del Rey, M. J. Obregon and G. M. de Escobar: Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology, 137(6), 2490-502 (1996)
DOI: 10.1210/endo.137.6.8641203

100. L. E. Braverman, S. H. Ingbar and K. Sterling: Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J Clin Invest, 49(5), 855-64 (1970)
DOI: 10.1172/JCI106304
PMid:4986007 PMCid:PMC535757

101. J. Jonklaas, A. C. Bianco, A. J. Bauer, K. D. Burman, A. R. Cappola, F. S. Celi, D. S. Cooper, B. W. Kim, R. P. Peeters, M. S. Rosenthal, A. M. Sawka and R. American Thyroid Association Task Force on Thyroid Hormone: Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid, 24(12), 1670-751 (2014)
DOI: 10.1089/thy.2014.0028
PMid:25266247 PMCid:PMC4267409

102. B. R. Haugen: Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab, 23(6), 793-800 (2009)
DOI: 10.1016/j.beem.2009.08.003
PMid:19942154 PMCid:PMC2784889

103. R. M. Paragliola, A. Prete, P. W. Kaplan, S. M. Corsello and R. Salvatori: Treatment of hypopituitarism in patients receiving antiepileptic drugs. The Lancet Diabetes & Endocrinology, 3(2), 132-140 (2015)
DOI: 10.1016/S2213-8587(14)70081-6

104. C. Virili, A. Antonelli, M. G. Santaguida, S. Benvenga and M. Centanni: Gastrointestinal Malabsorption of Thyroxine. Endocr Rev, 40(1), 118-136 (2019)
DOI: 10.1210/er.2018-00168

105. R. Bunevicius, G. Kazanavicius, R. Zalinkevicius and A. J. Prange, Jr.: Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N Engl J Med, 340(6), 424-9 (1999)
DOI: 10.1056/NEJM199902113400603

106. P. Saravanan, D. J. Simmons, R. Greenwood, T. J. Peters and C. M. Dayan: Partial substitution of thyroxine (T4) with tri-iodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J Clin Endocrinol Metab, 90(2), 805-12 (2005)
DOI: 10.1210/jc.2004-1672

107. V. Panicker, S. G. Wilson, T. D. Spector, S. J. Brown, M. Falchi, J. B. Richards, G. L. Surdulescu, E. M. Lim, S. J. Fletcher and J. P. Walsh: Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol (Oxf), 68(4), 652-9 (2008)
DOI: 10.1111/j.1365-2265.2007.03079.x

108. D. Gullo, A. Latina, F. Frasca, R. Le Moli, G. Pellegriti and R. Vigneri: Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One, 6(8), e22552 (2011)
DOI: 10.1371/journal.pone.0022552
PMid:21829633 PMCid:PMC3148220

109. R. P. Peeters, H. van Toor, W. Klootwijk, Y. B. de Rijke, G. G. Kuiper, A. G. Uitterlinden and T. J. Visser: Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J Clin Endocrinol Metab, 88(6), 2880-8 (2003)
DOI: 10.1210/jc.2002-021592

110. V. Panicker, C. Cluett, B. Shields, A. Murray, K. S. Parnell, J. R. Perry, M. N. Weedon, A. Singleton, D. Hernandez, J. Evans, C. Durant, L. Ferrucci, D. Melzer, P. Saravanan, T. J. Visser, G. Ceresini, A. T. Hattersley, B. Vaidya, C. M. Dayan and T. M. Frayling: A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine. J Clin Endocrinol Metab, 93(8), 3075-81 (2008)
DOI: 10.1210/jc.2008-0397
PMid:18492748 PMCid:PMC2515080

111. Y. Young Cho, H. Jeong Kim, H. Won Jang, T. Hyuk Kim, C. S. Ki, S. Wook Kim and J. Hoon Chung: The relationship of 19 functional polymorphisms in iodothyronine deiodinase and psychological well-being in hypothyroid patients. Endocrine, 57(1), 115-124 (2017)
DOI: 10.1007/s12020-017-1307-4

112. H. J. Wouters, H. C. van Loon, M. M. van der Klauw, M. F. Elderson, S. N. Slagter, A. M. Kobold, I. P. Kema, T. P. Links, J. V. van Vliet-Ostaptchouk and B. H. WolffenbutTel: No Effect of the Thr92Ala Polymorphism of Deiodinase-2 on Thyroid Hormone Parameters, Health-Related Quality of Life, and Cognitive Functioning in a Large Population-Based Cohort Study. Thyroid, 27(2), 147-155 (2017)
DOI: 10.1089/thy.2016.0199

113. M. Torlontano, C. Durante, I. Torrente, U. Crocetti, G. Augello, G. Ronga, T. Montesano, L. Travascio, A. Verrienti, R. Bruno, S. Santini, P. D'Arcangelo, B. Dallapiccola, S. Filetti and V. Trischitta: Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J Clin Endocrinol Metab, 93(3), 910-3 (2008)
DOI: 10.1210/jc.2007-1067

114. M. G. Castagna, M. Dentice, S. Cantara, R. Ambrosio, F. Maino, T. Porcelli, C. Marzocchi, C. Garbi, F. Pacini and D. Salvatore: DIO2 Thr92Ala Reduces Deiodinase-2 Activity and Serum-T3 Levels in Thyroid-Deficient Patients. J Clin Endocrinol Metab, 102(5), 1623-1630 (2017)
DOI: 10.1210/jc.2016-2587

115. M. Arici, E. Oztas, F. Yanar, N. Aksakal, B. Ozcinar and G. Ozhan: Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients. Endocr J, 65(3), 317-323 (2018)
DOI: 10.1507/endocrj.EJ17-0162

116. V. Panicker, P. Saravanan, B. Vaidya, J. Evans, A. T. Hattersley, T. M. Frayling and C. M. Dayan: Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab, 94(5), 1623-9 (2009)
DOI: 10.1210/jc.2008-1301

117. B. C. Appelhof, R. P. Peeters, W. M. Wiersinga, T. J. Visser, E. M. Wekking, J. Huyser, A. H. Schene, J. G. Tijssen, W. J. Hoogendijk and E. Fliers: Polymorphisms in type 2 deiodinase are not associated with well-being, neurocognitive functioning, and preference for combined thyroxine/3,5,3'-triiodothyronine therapy. J Clin Endocrinol Metab, 90(11), 6296-9 (2005)
DOI: 10.1210/jc.2005-0451

118. A. B. Santoro, D. D. Vargens, C. Barros Filho Mde, D. A. Bulzico, L. P. Kowalski, R. M. Meirelles, D. P. Paula, R. R. Neves, C. N. Pessoa, C. J. Struchine and G. Suarez-Kurtz: Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer. Br J Clin Pharmacol, 78(5), 1067-75 (2014)
DOI: 10.1111/bcp.12437
PMid:24910925 PMCid:PMC4243881

119. M. Medici, L. Chaker and R. P. Peeters: A Step Forward in Understanding the Relevance of Genetic Variation in Type 2 Deiodinase. J Clin Endocrinol Metab, 102(5), 1775-1778 (2017)
DOI: 10.1210/jc.2017-00585

120. W. M. Wiersinga: THERAPY OF ENDOCRINE DISEASE: T4 + T3 combination therapy: is there a true effect? Eur J Endocrinol, 177(6), R287-R296 (2017)
DOI: 10.1530/EJE-17-0645

121. N. Inoue, M. Watanabe, Y. Katsumata, N. Ishido, Y. Hidaka and Y. Iwatani: Functional Polymorphisms of the Type 1 and Type 2 Iodothyronine Deiodinase Genes in Autoimmune Thyroid Diseases. Immunol Invest, 47(5), 534-542 (2018)
DOI: 10.1080/08820139.2018.1458861

Abbreviations: alfa-melanocortin-stimulating hormone: alfa-MSH, Agouti-related peptide: AgRP, Differentiated thyroid cancer: DTC, Hypothalamus-pituitary-thyroid: HPT, L-amino acid transporters: LATS, Lipopolysaccharide: LPS, Loss of heterozygosity: LOH, Monocarboxylate transporters: MCT, Neuropeptide Y: NPY, Non-thyroidal illness syndrome: NTIS, Paraventricular nucleus: PVN, Peroxisome proliferator-activated receptor: PPAR, Phosphatidylinositol 3-OH kinase: PI3K, Pituitary adenylate cyclase-activating polypeptide: PACAP, Pituitary transforming gene: PTTG, Propylthiouracil: PTU, Resistance to thyroid hormone: RTH, Retinoid X receptors: RXR, Reverse T3: rT3, Selenocysteine insertion sequence-binding protein 2: SECISBP2 or SBP2, Selenocysteine-specific elongation factor tRNA: tRNASec, Selenocysteine-specific elongation factor: EFSec, Single nucleotide polymorphisms: SNPs, Thyroid hormone receptor alfa gene: THRA, Thyroid hormone receptor beta gene: THRB, Thyroid hormone receptors: TRs, Thyroid hormones: THs, Thyroid response elements: TREs, Thyrotropin: TSH, Thyrotropin-releasing hormone: TRH, Thyroxine: T4, Transporters of organic anions: OATPs, Triiodothyronine: T3, Type 1 iodothyronine deiodinase: D1, Type 2 iodothyronine deiodinase: D2, Type 3 iodothyronine deiodinase: D3, Wild-type: WT

Key Words: Iodothyronine Deiodinases, Thyroid Hormone, Hypothalamus–Pituitary–Thyroid Axis, SECISBP2, DIO Polymorphism, Reduced Sensitivity To Thyroid Hormone, Review

Send correspondence to: Salvatore M. Corsello, Largo Gemelli 8, I 00168, Rome, Italy, Tel: -39063219418, Fax: 39-0632500063, E-mail: salvatore.corsello@unicatt.it