[Frontiers in Bioscience, Landmark, 25, 134-146, Jan 1, 2020]

Insights from Drosophila melanogaster model of Alzheimer's disease

Nguyen Trong Tue1, Tran Quoc Dat2, Luong Linh Ly3, Vu Duc Anh1, Hideki Yoshida4,5

1Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam, 2Center for Gene-Protein Research, Hanoi Medical University, Hanoi, Vietnam, 3 Department of Physiology, Hanoi Medical University, Hanoi, Vietnam, 4Department of Applied Biology, 5The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Alzheimer’s disease (AD)
4. Drosophila AD models
    4.1. Aβ model
    4.2. APP/BACE1 model
    4.3. Tau model
5. A tool for screening therapeutic drugs
6. Acknowledgment
7. References

1. ABSTRACT

Alzheimer’s disease (AD) is a common chronic neurodegenerative disease that mainly affects the medial temporal lobe and associated neocortical structures. The disease process involves two abnormal structures, plaques and tangles, which damage and destroy nerve cells. Tangles are twisted fibers of tau protein that build up inside cells. Plaques are deposits of a protein fragment called amyloid-beta (Aβ) that accumulate in the spaces between nerve cells. Aβ derives from the amyloid precursor protein and is the main component of amyloid plaques in the AD brain. Although AD has been extensively examined, its pathogenetic mechanisms remain unclear and there are currently no effective drugs for this disorder. Many AD model systems have recently been established using Drosophila melanogaster by expressing the proteins involved in AD in the brain. These systems successfully reflect some of the symptoms associated with AD such as the onset of learning defects, age-dependent short-term memory impairment, increase of wakefulness and consolidated sleep disruption by expressing human Aβ42 or human APP/BACE in Drosophila central nervous system. We herein discuss these Drosophila AD models.

7. REFERENCES

1. Alzheimer's Association: 2016 Alzheimer's disease facts and figures. Alzheimers Dement 12, 459-509 (2016)
DOI: 10.1016/j.jalz.2016.03.001

2. N Sharma, N Khurana, A Muthuraman. Lower vertebrate and invertebrate models of Alzheimer's disease - A review. Eur J Pharmacol 815, 312-323 (2017)
DOI: 10.1016/j.ejphar.2017.09.017

3. K Iijima, K Iijima-Ando. Drosophila models of Alzheimer's amyloidosis: the challenge of dissecting the complex mechanisms of toxicity of amyloid-beta 42. J Alzheimers Dis15, 523-540 (2008).
DOI: 10.3233/JAD-2008-15402

4. J Gerstner, O Lenz, W Vanderheyden, M Chan, C Pfeiffenberger, A Pack. Amyloid-beta Induces Sleep Fragmentation that is Rescued by Fatty Acid Binding Proteins in Drosophila. J Neurosci Res 95, 1548-1564 (2017)
DOI: 10.1002/jnr.23778

5. A Moloney, D Sattelle, D Lomas, D Crowther: Alzheimer's disease: insights from Drosophila melanogaster models. Trends Biochem Sci35, 228-235 (2010)
DOI: 10.1016/j.tibs.2009.11.004

6. S Kocahan, Z Doğan: Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. Clin Psychopharmacol Neurosci 15, 1-8 (2017)
DOI: 10.9758/cpn.2017.15.1.1

7. X Du, X Wang, M Geng. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener7:2 (2018)
DOI: 10.1186/s40035-018-0107-y

8. R O'Brien, P Wong. Amyloid Precursor Protein Processing and Alzheimer's Disease. Annu Rev Neurosci 34, 185-204 (2011)
DOI: 10.1146/annurev-neuro-061010-113613

9. K Herrup: Re-imagining Alzheimer's disease - an age-based hypothesis. J Neurosci 30, 16755-16762 (2010)
DOI: 10.1523/JNEUROSCI.4521-10.2010

10. M Wolfe: The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target. Scientifica 2012 (2012)
DOI: 10.6064/2012/796024

11. J Lambert, C Ibrahim-Verbaas, D Harold, A Naj, R Sims, C Bellenguez, G Jun, J Bis, G Beecham, B Grenier-Boley, G Russo, T Thornton-Wells: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45, 1452-1458 (2013)
DOI: 10.1016/j.jalz.2013.04.040

12. B Laurijssens, F Aujard, A Rahman. Animal models of Alzheimer's disease and drug development. Drug Discovery Today: Technologies 10, 319-327 (2013)
DOI: 10.1016/j.ddtec.2012.04.001

13. S Sadigh-Eteghad, B Sabermarouf, A Majdi, M Talebi, M Farhoudi, J Mahmoudi. Amyloid-Beta: A Crucial Factor in Alzheimer's Disease. Med Princ Pract 24(1), 1-10 (2015)
DOI: 10.1159/000369101

14. M Kirkitadze, A Kowalska: Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer's disease. Acta Biochim Pol 52(2), 417-23 (2005)

15. G Shankar, D Walsh. Alzheimer's disease: synaptic dysfunction and Aβ. Mol Neurodegener 4, 48 (2009)
DOI: 10.1186/1750-1326-4-48

16. T Kihara, S Shimohama: Alzheimer's disease and acetylcholine receptors. Acta Neurobiol Exp 64, 99-105 (2004)

17. G Shankar, S Li, T Mehta, A Garcia-Munoz, N Shepardson, I Smith, F Brett, M Farrell, M Rowan, C Lemere, C Regan, D Walsh, B Sabatini, D Selkoe: Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14, 837-842 (2008)
DOI: 10.1038/nm1782

18. C Balducci, M Beeg, M Stravalaci, A Bastone, A Sclip, E Biasini, L Tapella, L Colombo, C Manzoni, T Borsello, R Chiesa, M Gobbi, M Salmona, G Forloni: Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107, 2295-2300 (2010)
DOI: 10.1073/pnas.0911829107

19. E Bier: Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6, 9-23 (2005)
DOI: 10.1038/nrg1503

20. L Reiter, L Potocki, S Chien, M Gribskov, E Bier: A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11, 1114-1125 (2001)
DOI: 10.1101/gr.169101

21. A Finelli, A Kelkar, H Song, H Yang, M Konsolaki: A model for studying Alzheimer's Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 26, 365-375 (2004)
DOI: 10.1016/j.mcn.2004.03.001

22. V Goguel, A Belair, D Ayaz, A Lampin-Saint-Amaux, N Scaplehorn, B Hassan, T Preat. Drosophila amyloid precursor protein-like is required for long-term memory. J Neurosci 31, 1032-1037 (2011)
DOI: 10.1523/JNEUROSCI.2896-10.2011

23. J Wentzell, B Bolkan, K Carmine-Simmen, T Swanson, D Musashe, D Kretzschmar. Amyloid precursor proteins are protective in Drosophila models of progressive neurodegeneration. Neurobiol Dis 46, 78-87 (2012)
DOI: 10.1016/j.nbd.2011.12.047

24. E Eric, R Kandel, H Schwartz, M Jessell, A Siegelbaum, A Hudspeth. Principles of Neural Science. In: Principles of Neural Science. Eds: McGraw-Hill Education, Medical (2012)

25. J Lin, W Wang, X Zhang, H Liu, X Zhao, F Huang. Intraneuronal accumulation of Aβ42 induces age-dependent slowing of neuronal transmission in Drosophila. Neurosci Bull 30, 185-190 (2014)
DOI: 10.1007/s12264-013-1409-9

26. D Drachman. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer's disease. Alzheimers Dement10, 372-380 (2014)
DOI: 10.1016/j.jalz.2013.11.003

27. X Lin, G Koelsch, S Wu, D Downs, A Dashti, J Tang. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc Natl Acad Sci USA 97, 1456-1460 (2000)
DOI: 10.1073/pnas.97.4.1456

28. I Greeve, D Kretzschmar, J Tschäpe, A Beyn, C Brellinger, M Schweizer, R Nitsch, R Reifegerste. Age-Dependent Neurodegeneration and Alzheimer-Amyloid Plaque Formation in Transgenic Drosophila. J Neurosci 24, 3899-3906 (2004)
DOI: 10.1523/JNEUROSCI.0283-04.2004

29. R Chakraborty, V Vepuri, S Mhatre. B Paddock, S Miller, S Michelson, R Delvadia, A Desai, M Vinokur, D Melicharek, S Utreja, P Khandelwal, S Ansaloni, L Goldstein. R Moir, J Lee, L Tabb, A Saunders, D Marenda. Characterization of a Drosophila Alzheimer's Disease Model: Pharmacological Rescue of Cognitive Defects. PLoS One6 (2011)
DOI: 10.1371/journal.pone.0020799

30. S Mhatre, V Satyasi, M Killen, B Paddock, R Moir, A Saunders, D Marenda. Synaptic abnormalities in a Drosophila model of Alzheimer's disease. Dis Model Mech 7, 373-385 (2014)
DOI: 10.1242/dmm.012104

31. S Lee, J Wang, W Yu, B Lu. Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Aβ toxicity in Drosophila. Nat Commun 3, 1312 (2012)
DOI: 10.1038/ncomms2278

32. B Bolkan, T Triphan, D Kretzschmar. β-secretase cleavage of the fly Amyloid Precursor Protein is required for glial survival. J Neurosci 32, 16181-16192 (2012)
DOI: 10.1523/JNEUROSCI.0228-12.2012

33. H Prasad, R Rao. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. J Biol Chem 290, 5311-5327 (2015)
DOI: 10.1074/jbc.M114.602219

34. S Mhatre, V Satyasi, M Killen, B Paddock, R Moir, A Saunders, D Marenda. Altered synapses in a Drosophila model of Alzheimer's disease. Dis Model Mech (2014)
DOI: 10.1242/dmm.012104

35. H Cai, Y Wang, D McCarthy, H Wen, D Borchelt, D Price, P Wong. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4, 233 (2001)
DOI: 10.1038/85064

36. L Dehmelt, S Halpain. The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6, 204 (2005)
DOI: 10.1186/gb-2004-6-1-204

37. S Feinstein, L Wilson. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739, 268-279 (2005)
DOI: 10.1016/j.bbadis.2004.07.002

38. Y Talmat-Amar, Y Arribat, M Parmentier. Vesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila. Int J Mol Sci 19 (2018)
DOI: 10.3390/ijms19030744

39. D Dias-Santagata, T Fulga, A Duttaroy, M Feany. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest 117, 236-245 (2007).
DOI: 10.1172/JCI28769

40. A Mershin, E Pavlopoulos, O Fitch, B Braden, D Nanopoulos, E Skoulakis. Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn Mem 11(3), 277-287 (2004)
DOI: 10.1101/lm.70804

41. A Brand, N Perrimon. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415 (1993)

42. X Chen, Y Li, J Huang, D Cao, G Yang, W Liu, H Lu, A Guo. Study of tauopathies by comparing Drosophila and human tau in Drosophila. Cell Tissue Res 329, 169-178 (2007)
DOI: 10.1007/s00441-007-0401-y

43. S Kosmidis, S Grammenoudi, K Papanikolopoulou, E Skoulakis. Differential effects of Tau on the integrity and function of neurons essential for learning in Drosophila. J Neurosci 30, 464-477 (2010)
DOI: 10.1523/JNEUROSCI.1490-09.2010

44. K Papanikolopoulou, S Kosmidis, S Grammenoudi, E Skoulakis. Phosphorylation differentiates tau-dependent neuronal toxicity and dysfunction. Biochem Soc Trans 38, 981-987 (2010)
DOI: 10.1042/BST0380981

45. D Williams, M Tyrer, D Shepherd. Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 428, 630-640 (2000)
DOI: 10.1002/1096-9861(20001225)428:4<630::AID-CNE4>3.0.CO;2-X

46. C Wittmann, M Wszolek, J Shulman, P Salvaterra, J Lewis, M Hutton, M Feany. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science293, 711-714 (2001)
DOI: 10.1126/science.1062382

47. M Sealey, E Vourkou, C Cowan, T Bossing, S Quraishe, S Grammenoudi, E Skoulakis, A Mudher: Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiol Dis105, 74-83 (2017)
DOI: 10.1016/j.nbd.2017.05.003

48. I Nishimura, Y Yang, B Lu: PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116, 671-682 (2004)
DOI: 10.1016/S0092-8674(04)00170-9

49. S Chatterjee, T Sang, G Lawless, G Jackson. Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18, 164-177 (2009)
DOI: 10.1093/hmg/ddn326

50. M Bakhoum, C Bakhoum, Z Ding, S Carlton, G Campbell, G Jackson. Evidence for autophagic gridlock in aging and neurodegeneration. Transl Res 164, 1-12 (2014)
DOI: 10.1016/j.trsl.2014.01.016

51. D Butterfield, J Owen: Lectin-affinity chromatography brain glycoproteomics and Alzheimer disease: insights into protein alterations consistent with the pathology and progression of this dementing disorder. Proteomics Clin App l5, 50-56 (2011)
DOI: 10.1002/prca.201000070

52. S Schedin-Weiss, B Winblad, L Tjernberg: The role of protein glycosylation in Alzheimer disease. FEBS J 281, 46-62 (2014)
DOI: 10.1111/febs.12590

53. Y Zhu, X Shan, S Yuzwa, D Vocadlo. The emerging link between O-GlcNAc and Alzheimer disease. J Biol Chem 289, 34472-34481 (2014)
DOI: 10.1074/jbc.R114.601351

54. M Frenkel-Pinter, S Stempler, S Tal-Mazaki, Y Losev, A Singh-Anand, D Escobar-Álvarez, J Lezmy, E Gazit, E Ruppin, D Segal: Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila. Neurobiol Aging 56, 159-171 (2017)
DOI: 10.1016/j.neurobiolaging.2017.04.020

55. J Shulman, P Chipendo, L Chibnik, C Aubin, D Tran, B Keenan, P Kramer, J Schneider, D Bennett, M Feany, P De Jager. Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am J Hum Genet 88, 232-238 (2011)
DOI: 10.1016/j.ajhg.2011.01.006

56. H Querfurth, F LaFerla. Alzheimer's disease. N Engl J Med 362, 329-344 (2010)
DOI: 10.1056/NEJMra0909142

57. C Jaramillo. Screening of Natural Plant Products as Potential Anti-Dementia Therapies Using a Drosophila Tau Model. Case Study: Green tea, Lemon Balm and Blueberries in Alzheimer's Disease. Eds: NewCastle University (2015)

58. A Kizhakke, S Olakkaran, A Antony, S Tilagul, G Hunasanahally: Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer's disease Drosophila model. J. Chem Neuroanat 95, 115-122 (2019)
DOI: 10.1016/j.jchemneu.2017.10.002

59. M Haddadi, S Jahromi, U Nongthomba, T Shivanandappa, S Ramesh: 4-Hydroxyisophthalic acid from Decalepis hamiltonii rescues the neurobehavioral deficit in transgenic Drosophila model of taupathies. Neurochem Int 100, 78-90 (2016)
DOI: 10.1016/j.neuint.2016.09.007

60. Q Liu, J Lee, Y Kim, S Lee, Y Hong, S Hwang, Y Oh, K Lee, H Yun, I Lee, S Jeon, Y Chin, B Koo, K Cho: In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease. Biol Pharm Bull 38, 1891-1901 (2015)
DOI: 10.1248/bpb. b15-00459

61. S Hwang, H Jeong, E Hong, H Joo, K Cho, S Nam: Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer's disease models. Biol Open 8 (2019)
DOI: 10.1242/bio.036657

62. A Boutajangout, T Wisniewski: The innate immune system in Alzheimer's disease. Int J Cell Bio 2013 (2013)
DOI: 10.1155/2013/576383

63. E Ridolfi, C Barone, E Scarpini, D Galimberti. The role of the innate immune system in Alzheimer's disease and frontotemporal lobar degeneration: an eye on microglia. Clin Dev Immunol 2013 (2013)
DOI: 10.1155/2013/939786

64. L Honig, B Vellas, M Woodward, M Boada, R Bullock, M Borrie, K Hager, N Andreasen, E Scarpini, H Liu-Seifert, M Case, R Dean, A Hake, K Sundell, V Poole Hoffmann, C Carlson, R Khanna, M Mintun, R DeMattos, K Selzler, E Siemers. Trial of Solanezumab for Mild Dementia Due to Alzheimer's Disease. N Engl J Med 378, 321-330 (2018)
DOI: 10.1056/NEJMoa1705971

65. V Chow, M Mattson, P Wong, M Gleichmann. An Overview of APP Processing Enzymes and Products. Neuromolecular Med 12, 1–12 (2010)
DOI: 10.1007/s12017-009-8104-z

Key Words: Alzheimer’s disease, Tauopathies, Amyloid-beta, APPL, BACE1, Drosophila

Send correspondence to: Nguyen Trong Tue, Faculty of Medical Technology, Hanoi Medical University, No. 1, Ton That Tung, DongDa, Hanoi, Vietnam, Tel: 84 902185488, Fax: 0484 48525115, E-mail: trongtue@hmu.edu.vn