[Frontiers in Bioscience, Landmark, 25, 43-68, Jan 1, 2020]

Reporting on the future of integrative structural biology ORAU workshop

George L Hamilton,1 Joshua Alper,1,2,3 Hugo Sanabria1

1Department of Physics and Astronomy, 118 Kinard Laboratory, Clemson University, Clemson, SC 29631, 2Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29631, 3Eukaryotic Pathogen Innovations Center, Life Sciences Building, Clemson University, Clemson, SC 29631

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Challenges in integrative structural biology
4. Summary of speaker presentations
    4.1. Electron Microscopy
    4.2. Fluorescence microscopy imaging
    4.3. Label-based methods
    4.4. X-ray crystallography
    4.5. Computational methods
    4.6. Data archiving
5. Roundtable discussions
    5.1. Data integration and representations
    5.2. Time evolution and biological networks
    5.3. The future ahead
6. A Path forward: the “virtual cell”
7. Give tangible form to the ultimate goal of structural biology
8. Acknowledgments
9. References

1. ABSTRACT

Integrative and hybrid methods have the potential to bridge long-standing knowledge gaps in structural biology. These methods will have a prominent role in the future of the field as we make advances toward a complete, unified representation of biology that spans the molecular and cellular scales. The Department of Physics and Astronomy at Clemson University hosted The Future of Integrative Structural Biology workshop on April 29, 2017 and partially sponsored by partially sponsored by a program of the Oak Ridge Associated Universities (ORAU). The workshop brought experts from multiple structural biology disciplines together to discuss near-term steps toward the goal of a molecular atlas of the cell. The discussion focused on the types of structural data that should be represented, how this data should be represented, and how the time domain might be incorporated into such an atlas. The consensus was that an explorable, map-like Virtual Cell, containing both spatial and temporal data bridging the atomic and cellular length scales obtained by multiple experimental methods, represents the best path toward a complete atlas of the cell.

9. REFERENCES

1. P. E. Wright and H. J. Dyson: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol, 293(2), 321-31 (1999)
DOI: 10.1006/jmbi.1999.3110

2. A. Sali, R. Glaeser, T. Earnest and W. Baumeister: From words to literature in structural proteomics. Nature, 422(6928), 216 (2003)

3. O. C. Redfern, B. Dessailly and C. A. Orengo: Exploring the structure and function paradigm. Curr Opin Struct Biol, 18(3), 394-402 (2008)
DOI: 10.1016/j.sbi.2008.05.007

4. K. Kuwata: An Emerging Concept of Biomolecular Dynamics and Function: Applications of NMR & MRI. Magnetic Resonance in Medical Sciences, 1(1), 27-31 (2002)
DOI: 10.2463/mrms.1.27

5. M. Karplus and J. Kuriyan: Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679 (2005)
DOI: 10.1073/pnas.0408930102

6. A. B. Ward, A. Sali and I. A. Wilson: Biochemistry. Integrative structural biology. Science, 339(6122), 913-5 (2013)
DOI: 10.1126/science.1228565

7. A. Doerr: Cryo-electron tomography. Nature Methods, 14, 34 (2016)
DOI: 10.1038/nmeth.4115

8. C. M. Oikonomou and G. J. Jensen: Cellular Electron Cryotomography: Toward Structural Biology In situ. Annu Rev Biochem, 86, 873-896 (2017)
DOI: 10.1146/annurev-biochem-061516-044741

9. E. H. Egelman: Single-particle reconstruction from EM images of helical filaments. Curr Opin Struct Biol, 17(5), 556-61 (2007)
DOI: 10.1016/j.sbi.2007.07.006

10. I. Patla, T. Volberg, N. Elad, V. Hirschfeld-Warneken, C. Grashoff, R. Fässler, J. P. Spatz, B. Geiger and O. Medalia: Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biology, 12, 909 (2010)
DOI: 10.1038/ncb2095
https://www.nature.com/articles/ncb2095#supplementary-information

11. P. Schellenberger, R. Kaufmann, C. A. Siebert, C. Hagen, H. Wodrich and K. Grünewald: High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy, 143(100), 41-51 (2014)
DOI: 10.1016/j.ultramic.2013.10.011

12. S. Kalinin, R. Kuhnemuth, H. Vardanyan and C. A. Seidel: Note: a 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy. Rev Sci Instrum, 83(9), 096105 (2012)
DOI: 10.1063/1.4753994

13. S. Felekyan, S. Kalinin, H. Sanabria, A. Valeri and C. A. Seidel: Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. Chemphyschem, 13(4), 1036-53 (2012)
DOI: 10.1002/cphc.201100897

14. V. Kudryavtsev, M. Sikor, S. Kalinin, D. Mokranjac, C. A. Seidel and D. C. Lamb: Combining MFD and PIE for accurate single-pair Forster resonance energy transfer measurements. Chemphyschem, 13(4), 1060-78 (2012)
DOI: 10.1002/cphc.201100822

15. T. O. Peulen, O. Opanasyuk and C. A. M. Seidel: Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. J Phys Chem B, 121(35), 8211-8241 (2017)
DOI: 10.1021/acs.jpcb.7b03441

16. M. Dimura, T. O. Peulen, C. A. Hanke, A. Prakash, H. Gohlke and C. A. M. Seidel: Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Current Opinion in Structural Biology, 40, 163-185 (2016)

17. S. W. Hell and J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11), 780-2 (1994)

18. W. Wang, G. Zhao, C. Kuang, L. Xu, S. Liu, S. Sun, P. Shentu, Y. M. Yang, Y. Xu and X. Liu: Integrated dual-color stimulated emission depletion (STED) microscopy and fluorescence emission difference (FED) microscopy. Optics Communications, 423, 167-174 (2018)

19. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li and X. Liu: Breaking the diffraction barrier using fluorescence emission difference microscopy. Scientific reports, 3, 1441 (2013)

20. G. Vicidomini, P. Bianchini and A. Diaspro: STED super-resolved microscopy. Nat Methods, 15(3), 173-182 (2018)
DOI: 10.1038/nmeth.4593

21. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff and A. Schönle: Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature, 457(7233), 1159 (2009)

22. M. T. Lerch, Z. Yang, C. Altenbach and W. L. Hubbell: High-Pressure EPR and Site-Directed Spin Labeling for Mapping Molecular Flexibility in Proteins. Methods Enzymol, 564, 29-57 (2015)
DOI: 10.1016/bs.mie.2015.07.004

23. C. Altenbach, S. L. Flitsch, H. G. Khorana and W. L. Hubbell: Structural Studies on Transmembrane Proteins .2. Spin Labeling of Bacteriorhodopsin Mutants at Unique Cysteines. Biochemistry, 28(19), 7806-7812 (1989)
DOI: 10.1021/bi00445a042

24. S. Milikisiyants, M. A. Voinov, A. Marek, M. Jafarabadi, J. Liu, R. Han, S. Wang and A. I. Smirnov: Enhancing sensitivity of Double Electron-Electron Resonance (DEER) by using Relaxation-Optimized Acquisition Length Distribution (RELOAD) scheme. J Magn Reson, 298, 115-126 (2019)
DOI: 10.1016/j.jmr.2018.12.004

25. C. Mura, E. J. Draizen and P. E. Bourne: Structural biology meets data science: does anything change? Current opinion in structural biology, 52, 95-102 (2018)

26. J. Lengyel, E. Hnath, M. Storms and T. Wohlfarth: Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR. J Struct Funct Genomics, 15(3), 117-24 (2014)
DOI: 10.1007/s10969-014-9179-9

27. M. D. Purdy, B. C. Bennett, W. E. McIntire, A. K. Khan, P. M. Kasson and M. Yeager: Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Curr Opin Struct Biol, 27, 138-48 (2014)
DOI: 10.1016/j.sbi.2014.08.006

28. M. Rey, V. Sarpe, K. M. Burns, J. Buse, C. A. Baker, M. van Dijk, L. Wordeman, A. M. Bonvin and D. C. Schriemer: Mass spec studio for integrative structural biology. Structure, 22(10), 1538-48 (2014)
DOI: 10.1016/j.str.2014.08.013

29. A. Politis and A. J. Borysik: Assembling the pieces of macromolecular complexes: Hybrid structural biology approaches. Proteomics, 15(16), 2792-803 (2015)
DOI: 10.1002/pmic.201400507

30. H. Van Den Bedem and J. S. Fraser: Integrative, dynamic structural biology at atomic resolution—it's about time. Nature methods, 12(4), 307 (2015)

31. M. Faini, F. Stengel and R. Aebersold: The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology. J Am Soc Mass Spectrom, 27(6), 966-74 (2016)
DOI: 10.1007/s13361-016-1382-4

32. P. Romano and F. Cordero: NETTAB 2014: From high-throughput structural bioinformatics to integrative systems biology. In: BioMed Central, (2016)

33. F. Forneris and A. Mattevi: Expanding the structural biology toolbox with single-molecule holography. Proc Natl Acad Sci U S A, 114(7), 1448-1450 (2017)
DOI: 10.1073/pnas.1620897114

34. S. Olsson, H. Wu, F. Paul, C. Clementi and F. Noe: Combining experimental and simulation data of molecular processes via augmented Markov models. Proc Natl Acad Sci U S A, 114(31), 8265-8270 (2017)
DOI: 10.1073/pnas.1704803114

35. C. Morris: The Life Cycle of Structural Biology Data. Data Science Journal, 17, 26 (2018)
DOI: http://doi.org/10.5334/dsj-2018-026

36. R. M. Yennamalli: Structural Bioinformatics and Big Data Analytics: A mini-review. International Journal for Computational Biology (IJCB); Vol 6, No 1 (2017) (2017)

37. G. J. Kleywegt, S. Velankar and A. Patwardhan: Structural biology data archiving - where we are and what lies ahead. FEBS Lett, 592(12), 2153-2167 (2018)
DOI: 10.1002/1873-3468.13086

38. A. Gutmanas, T. J. Oldfield, A. Patwardhan, S. Sen, S. Velankar and G. J. Kleywegt: The role of structural bioinformatics resources in the era of integrative structural biology. Acta Crystallogr D Biol Crystallogr, 69(Pt 5), 710-21 (2013)
DOI: 10.1107/S0907444913001157

39. A. Sali, H. M. Berman, T. Schwede, J. Trewhella, G. Kleywegt, S. K. Burley, J. Markley, H. Nakamura, P. Adams and A. M. J. J. Bonvin: Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure, 23(7), 1156-1167 (2015)

40. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne: The protein data bank. Nucleic acids research, 28(1), 235-242 (2000)

41. H. Berman, K. Henrick and H. Nakamura: Announcing the worldwide Protein Data Bank. Nat Struct Biol, 10(12), 980 (2003)
DOI: 10.1038/nsb1203-980

42. H. Berman, K. Henrick, H. Nakamura and J. L. Markley: The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 35, D301-D303 (2007)
DOI: 10.1093/nar/gkl971

43. M. Guharoy and P. Chakrabarti: Conserved residue clusters at protein-protein interfaces and their use in binding site identification. BMC Bioinformatics, 11(1), 286 (2010)
DOI: 10.1186/1471-2105-11-286

44. T. Tesileanu, L. J. Colwell and S. Leibler: Protein sectors: statistical coupling analysis versus conservation. PLoS Comput Biol, 11(2), e1004091 (2015)
DOI: 10.1371/journal.pcbi.1004091

45. H. C. Kornau, L. T. Schenker, M. B. Kennedy and P. H. Seeburg: Domain Interaction between Nmda Receptor Subunits and the Postsynaptic Density Protein Psd-95. Science, 269(5231), 1737-1740 (1995)
DOI: 10.1126/science.7569905

46. U. Kistner, B. M. Wenzel, R. W. Veh, C. Cases-Langhoff, A. M. Garner, U. Appeltauer, B. Voss, E. D. Gundelfinger and C. C. Garner: SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem, 268(7), 4580-3 (1993)

47. M. D. Zimmerman, M. Grabowski, M. J. Domagalski, E. M. Maclean, M. Chruszcz and W. Minor: Data management in the modern structural biology and biomedical research environment. Methods Mol Biol, 1140, 1-25 (2014)
DOI: 10.1007/978-1-4939-0354-2_1

48. M. Baker: 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452-4 (2016)
DOI: 10.1038/533452a

49. P. D. Schloss: Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research. Mbio, 9(3) (2018)
DOI: 10.1128/mBio.00525-18

50. A. Nekrutenko and J. Taylor: Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nature Reviews Genetics, 13(9), 667-U93 (2012)
DOI: 10.1038/nrg3305

51. S. R. Horn, M. M. Long, B. W. Nelson, N. B. Allen, P. A. Fisher and M. L. Byrne: Replication and reproducibility issues in the relationship between C-reactive protein and depression: A systematic review and focused meta-analysis. Brain Behavior and Immunity, 73, 85-114 (2018)
DOI: 10.1016/j.bbi.2018.06.016

52. M. B. O'Rourke, S. P. Djordjevic and M. P. Padula: The quest for improved reproducibility in MALDI mass spectrometry. Mass Spectrom Rev, 37(2), 217-228 (2018)
DOI: 10.1002/mas.21515

53. A. Y. Lau and D. I. Chasman: Functional classification of proteins and protein variants. Proc Natl Acad Sci U S A, 101(17), 6576-81 (2004)
DOI: 10.1073/pnas.0305043101

54. M. Manoharan, S. A. Muhammad and R. Sowdhamini: Sequence Analysis and Evolutionary Studies of Reelin Proteins. Bioinform Biol Insights, 9, 187-93 (2015)
DOI: 10.4137/BBI.S26530

55. R. J. Najmanovich: Evolutionary studies of ligand binding sites in proteins. Curr Opin Struct Biol, 45, 85-90 (2017)
DOI: 10.1016/j.sbi.2016.11.024

56. A. G. Murzin, S. E. Brenner, T. Hubbard and C. Chothia: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247(4), 536-40 (1995)
DOI: 10.1006/jmbi.1995.0159

57. S. Mandal, M. Moudgil and S. K. Mandal: Rational drug design. Eur J Pharmacol, 625(1-3), 90-100 (2009)
DOI: 10.1016/j.ejphar.2009.06.065

58. M. K. Hellerstein: In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu Rev Nutr, 23, 379-402 (2003)
DOI: 10.1146/annurev.nutr.23.011702.073045

59. B. Vallat, B. Webb, J. D. Westbrook, A. Sali and H. M. Berman: Development of a prototype system for archiving integrative/hybrid structure models of biological macromolecules. Structure, 26(6), 894-904 (2018)

60. C. J. Lawrence, R. K. Dawe, K. R. Christie, D. W. Cleveland, S. C. Dawson, S. A. Endow, L. S. Goldstein, H. V. Goodson, N. Hirokawa, J. Howard, R. L. Malmberg, J. R. McIntosh, H. Miki, T. J. Mitchison, Y. Okada, A. S. Reddy, W. M. Saxton, M. Schliwa, J. M. Scholey, R. D. Vale, C. E. Walczak and L. Wordeman: A standardized kinesin nomenclature. J Cell Biol, 167(1), 19-22 (2004)
DOI: 10.1083/jcb.200408113

61. E. F. Hom, G. B. Witman, E. H. Harris, S. K. Dutcher, R. Kamiya, D. R. Mitchell, G. J. Pazour, M. E. Porter, W. S. Sale, M. Wirschell, T. Yagi and S. M. King: A unified taxonomy for ciliary dyneins. Cytoskeleton (Hoboken), 68(10), 555-65 (2011)
DOI: 10.1002/cm.20533

62. T. UniProt Consortium: UniProt: the universal protein knowledgebase. Nucleic Acids Res, 46(5), 2699 (2018)
DOI: 10.1093/nar/gky092

63. J. Trewhella, W. A. Hendrickson, G. J. Kleywegt, A. Sali, M. Sato, T. Schwede, D. I. Svergun, J. A. Tainer, J. Westbrook and H. M. Berman: Report of the wwPDB Small-Angle Scattering Task Force: data requirements for biomolecular modeling and the PDB. Structure, 21(6), 875-81 (2013)
DOI: 10.1016/j.str.2013.04.020

64. E. Valentini, A. G. Kikhney, G. Previtali, C. M. Jeffries and D. I. Svergun: SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Research, 43(D1), D357-D363 (2015)
DOI: 10.1093/nar/gku1047

65. M. Knoll and E. Ruska: The Electron Microscope. Zeitschrift Fur Physik, 78(5-6), 318-339 (1932)
DOI: 10.1007/Bf01342199

66. H. Wang: Cryo-electron microscopy for structural biology: current status and future perspectives. Sci China Life Sci, 58(8), 750-6 (2015)
DOI: 10.1007/s11427-015-4851-2

67. J. P. Renaud, A. Chari, C. Ciferri, W. T. Liu, H. W. Remigy, H. Stark and C. Wiesmann: Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews Drug Discovery, 17(7), 471-492 (2018)
DOI: 10.1038/nrd.2018.77

68. Y. F. Cheng: Single-Particle Cryo-EM at Crystallographic Resolution. Cell, 161(3), 450-457 (2015)
DOI: 10.1016/j.cell.2015.03.049

69. K. Murata and M. Wolf: Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica Et Biophysica Acta-General Subjects, 1862(2), 324-334 (2018)
DOI: 10.1016/j.bbagen.2017.07.020

70. A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. Pragani, M. B. Boxer, L. A. Earl, J. L. S. Milne and S. Subramaniam: Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell, 165(7), 1698-1707 (2016)
DOI: 10.1016/j.cell.2016.05.040

71. B. Huang, M. Bates and X. Zhuang: Super-resolution fluorescence microscopy. Annu Rev Biochem, 78, 993-1016 (2009)
DOI: 10.1146/annurev.biochem.77.061906.092014

72. S. J. Sahl, S. W. Hell and S. Jakobs: Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol, 18(11), 685-701 (2017)
DOI: 10.1038/nrm.2017.71

73. S. J. Sahl and W. E. Moerner: Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol, 23(5), 778-87 (2013)
DOI: 10.1016/j.sbi.2013.07.010

74. M. J. Rust, M. Bates and X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10), 793-5 (2006)
DOI: 10.1038/nmeth929

75. Y. Zhang, P. D. Nallathamby, G. D. Vigil, A. A. Khan, D. E. Mason, J. D. Boerckel, R. K. Roeder and S. S. Howard: Super-resolution fluorescence microscopy by stepwise optical saturation. Biomed Opt Express, 9(4), 1613-1629 (2018)
DOI: 10.1364/BOE.9.001613

76. A. Sharonov and R. M. Hochstrasser: Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A, 103(50), 18911-6 (2006)
DOI: 10.1073/pnas.0609643104

77. P. Hoyer, G. de Medeiros, B. Balazs, N. Norlin, C. Besir, J. Hanne, H. G. Krausslich, J. Engelhardt, S. J. Sahl, S. W. Hell and L. Hufnagel: Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. Proc Natl Acad Sci U S A, 113(13), 3442-6 (2016)
DOI: 10.1073/pnas.1522292113

78. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynna, V. Westphal, F. D. Stefani, J. Elf and S. W. Hell: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355(6325), 606-612 (2017)
DOI: 10.1126/science.aak9913

79. K. Pan, D. N. Kim, F. Zhang, M. R. Adendorff, H. Yan and M. Bathe: Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat Commun, 5, 5578 (2014)
DOI: 10.1038/ncomms6578

80. S.-M. Guo, R. Veneziano, S. Gordonov, L. Li, D. Park, A. B. Kulesa, P. C. Blainey, J. R. Cottrell, E. S. Boyden and M. Bathe: Multiplexed confocal and super-resolution fluorescence imaging of cytoskeletal and neuronal synapse proteins. bioRxiv, 111625 (2017)

81. B. Hellenkamp, S. Schmid, O. Doroshenko, O. Opanasyuk, R. Kuhnemuth, S. R. Adariani, B. Ambrose, M. Aznauryan, A. Barth, V. Birkedal, M. E. Bowen, H. T. Chen, T. Cordes, T. Eilert, C. Fijen, C. Gebhardt, M. Gotz, G. Gouridis, E. Gratton, T. Ha, P. Y. Hao, C. A. Hanke, A. Hartmann, J. Hendrix, L. L. Hildebrandt, V. Hirschfeld, J. Hohlbein, B. Y. Hua, C. G. Hubner, E. Kallis, A. N. Kapanidis, J. Y. Kim, G. Krainer, D. C. Lamb, N. K. Lee, E. A. Lemke, B. Levesque, M. Levitus, J. J. McCann, N. Naredi-Rainer, D. Nettels, T. Ngo, R. Y. Qiu, N. C. Robb, C. Rocker, H. Sanabria, M. Schlierf, T. Schroder, B. Schuler, H. Seidel, L. Streit, J. Thurn, P. Tinnefeld, S. Tyagi, N. Vandenberk, A. M. Vera, K. R. Weninger, B. Wunsch, I. S. Yanez-Orozco, J. Michaelis, C. A. M. Seidel, T. D. Craggs and T. Hugel: Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study (vol 15, pg 984, 2018). Nature Methods, 15(11), 984-984 (2018)
DOI: 10.1038/s41592-018-0193-x

82. I. S. Yanez Orozco, F. A. Mindlin, J. Ma, B. Wang, B. Levesque, M. Spencer, S. Rezaei Adariani, G. Hamilton, F. Ding, M. E. Bowen and H. Sanabria: Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat Commun, 9(1), 3724 (2018)
DOI: 10.1038/s41467-018-06133-0

83. S. Milikisiyants, S. L. Wang, R. A. Munro, M. Donohue, M. E. Ward, D. Bolton, L. S. Brown, T. I. Smirnova, V. Ladizhansky and A. I. Smirnov: Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. Journal of Molecular Biology, 429(12), 1903-1920 (2017)
DOI: 10.1016/j.jmb.2017.05.005

84. D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tjioe, D. Schneidman-Duhovny, B. Peterson and A. Sali: Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol, 10(1), e1001244 (2012)
DOI: 10.1371/journal.pbio.1001244

85. A. Hospital, J. R. Goni, M. Orozco and J. L. Gelpi: Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem, 8, 37-47 (2015)
DOI: 10.2147/AABC.S70333

86. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman: Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3), 403-410 (1990)
DOI: 10.1016/S0022-2836(05)80360-2

87. B. Webb and A. Sali: Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, 47(1), 5-6 (2014)

88. R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu and D. E. Shaw: Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys, 41, 429-52 (2012)
DOI: 10.1146/annurev-biophys-042910-155245

89. K. Cowtan: Phase Problem in X-ray Crystallography, and Its Solution. e LS (2001)

90. W. Huang, K. M. Ravikumar, M. Parisien and S. C. Yang: Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. Journal of Structural Biology, 196(3), 340-349 (2016)
DOI: 10.1016/j.jsb.2016.08.001

91. A. Patwardhan and C. L. Lawson: Databases and Archiving for CryoEM. Methods Enzymol, 579, 393-412 (2016)
DOI: 10.1016/bs.mie.2016.04.015

92. E. S. Lander, I. H. G. S. Consortium, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D. McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer, J. B. Bouck, E. J. Sodergren, K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker, S. L. Naylor, R. S. Kucherlapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert, P. Wincker, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. M. Yang, J. Yu, J. Wang, G. Y. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Z. Qin, R. W. Davis, N. A. Federspiel, A. P. Abola, M. J. Proctor, R. M. Myers, J. Schmutz, M. Dickson, J. Grimwood, D. R. Cox, M. V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki, S. Minoshima, G. A. Evans, M. Athanasiou, R. Schultz, B. A. Roe, F. Chen, H. Q. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W. R. McCombie, M. de la Bastide, N. Dedhia, H. Blocker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D. G. Brown, C. B. Burge, L. Cerutti, H. C. Chen, D. Church, M. Clamp, R. R. Copley, T. Doerks, S. R. Eddy, E. E. Eichler, T. S. Furey, J. Galagan, J. G. R. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. H. Jang, L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. J. Kent, P. Kitts, E. V. Koonin, I. Korf, D. Kulp, D. Lancet, T. M. Lowe, A. McLysaght, T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P. Ponting, G. Schuler, J. R. Schultz, G. Slater, A. F. A. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. I. Wolf, K. H. Wolfe, S. P. Yang, R. F. Yeh, F. Collins, M. S. Guyer, J. Peterson, A. Felsenfeld, K. A. Wetterstrand, A. Patrinos, M. J. Morgan and I. H. G. S. Conso: Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921 (2001)
DOI: 10.1038/35057062

93. N. Cancer Genome Atlas Research, J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. Shaw, B. A. Ozenberger, K. Ellrott, I. Shmulevich, C. Sander and J. M. Stuart: The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 45(10), 1113-20 (2013)
DOI: 10.1038/ng.2764

94. A. Regev, S. A. Teichmann, E. S. Lander, I. Amt, C. Benoist, E. Birney, B. Bodenmiller, P. Campbell, P. Carninci, M. Clatworthy, H. Clevers, B. Deplancke, I. Dunham, J. Eberwine, R. Elis, W. Enard, A. Farmer, L. Fugger, B. Gottgens, N. Hacohen, M. Haniffa, M. Hemberg, S. Kim, P. Klenerman, A. Kriegstein, E. D. Lein, S. Linnarsson, E. Lundberg, J. Lundeberg, P. Majumder, J. C. Marioni, M. Merad, M. Mhlanga, M. Nawijin, M. Netea, G. Nolan, D. Pe'er, A. Phillipakis, C. P. Ponting, S. Quake, W. Reik, O. Rozenblatt-Rosen, J. Sanes, R. Satija, T. N. Schumacher, A. Shalek, E. Shapiro, P. Sharma, J. W. Shin, O. Stegle, M. Stratton, M. J. T. Stubbington, F. J. Theis, M. Uhlen, A. Van Oudenaarden, A. Wagner, F. Watt, J. Weissman, B. Wold, R. Xavier, N. Yosef and H. C. A. Meeting: The Human Cell Atlas. Elife, 6 (2017)
DOI: 10.7554/eLife.27041

95. F. Alber, F. Forster, D. Korkin, M. Topf and A. Sali: Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem, 77, 443-77 (2008)
DOI: 10.1146/annurev.biochem.77.060407.135530

96. J. F. Lin and D. Nicastro: Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science, 360(6387) (2018)
DOI: 10.1126/science.aar1968

97. C. M. Hampton, J. D. Strauss, Z. L. Ke, R. S. Dillard, J. E. Hammonds, E. Alonas, T. M. Desai, M. Marin, R. E. Storms, F. Leon, G. B. Melikyan, P. J. Santangelo, P. W. Spearman and E. R. Wright: Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nature Protocols, 12(1) (2017)
DOI: 10.1038/nprot.2016.168

98. V. B. S. Chan, M. B. Johnstone, A. P. Wheeler and A. S. Mount: Chitin Facilitated Mineralization in the Eastern Oyster, 5(347) (2018)
DOI: 10.3389/fmars.2018.00347

99. R. Jungmann, M. S. Avendano, J. B. Woehrstein, M. Dai, W. M. Shih and P. Yin: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods, 11(3), 313-8 (2014)
DOI: 10.1038/nmeth.2835

100. D. A. Keedy, Z. B. Hill, J. T. Biel, E. Kang, T. J. Rettenmaier, J. Brandao-Neto, N. M. Pearce, F. von Delft, J. A. Wells and J. S. Fraser: An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Elife, 7 (2018)
DOI: 10.7554/eLife.36307.001

Key Words: Integrative Methods, Hybrid Methods, Structural Biology, Workshop, Review

Send correspondence to: Hugo Sanabria, Physics and Astronomy, Clemson University, 214 Kinard Lab, Clemson, S.C. 29634-0978, Tel: 864-656-1749, Fax: 864-656-0805, E-mail: hsanabr@clemson.edu