[Frontiers in Bioscience, Landmark, 25, 1-42, Jan 1, 2020]

AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals

Laura Sala1, Srividya Chandrasekhar1, Joana A. Vidigal1

1Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA

TABLE OF CONTENTS

1. Abstract
2. A Long Evolutionary Road for Argonaute Proteins
3. Not all AGOs are created equal
4. Biogenesis of Small RNA guides in mammals
5. Small-RNA loading and sorting into AGO proteins
6. RISC assembly and gene regulation by miRNAs
7. Argonaute catalytic activity in mammals
8. Argonautes in the nucleus
9. Functional specification beyond catalysis
10. Concluding Remarks
11. Acknowledgments
12. References

1. ABSTRACT

Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.

12. REFERENCES

1. K. Bohmert, I. Camus, C. Bellini, D. Bouchez, M. Caboche and C. Benning: AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J, 17(1), 170-80 (1998)
DOI: 10.1093/emboj/17.1.170
PMid:9427751 PMCid:PMC1170368

2. C. Hunter, H. Sun and R. S. Poethig: The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol, 13(19), 1734-9 (2003)
DOI: 10.1016/j.cub.2003.09.004
PMid:14521841

3. D. C. Swarts, M. M. Jore, E. R. Westra, Y. Zhu, J. H. Janssen, A. P. Snijders, Y. Wang, D. J. Patel, J. Berenguer, S. J. J. Brouns and J. van der Oost: DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 507(7491), 258-261 (2014)
DOI: 10.1038/nature12971
PMid:24531762 PMCid:PMC4697943

4. I. A. Drinnenberg, D. E. Weinberg, K. T. Xie, J. P. Mower, K. H. Wolfe, G. R. Fink and D. P. Bartel: RNAi in budding yeast. Science, 326(5952), 544-550 (2009)
DOI: 10.1126/science.1176945
PMid:19745116 PMCid:PMC3786161

5. Y. R. Yuan, Y. Pei, J. B. Ma, V. Kuryavyi, M. Zhadina, G. Meister, H. Y. Chen, Z. Dauter, T. Tuschl and D. J. Patel: Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell, 19(3), 405-19 (2005)
DOI: 10.1016/j.molcel.2005.07.011
PMid:16061186 PMCid:PMC4689305

6. Y. Wang, G. Sheng, S. Juranek, T. Tuschl and D. J. Patel: Structure of the guide-strand-containing argonaute silencing complex. Nature, 456(7219), 209-13 (2008)
DOI: 10.1038/nature07315
PMid:18754009 PMCid:PMC4689319

7. Y. Wang, S. Juranek, H. Li, G. Sheng, G. S. Wardle, T. Tuschl and D. J. Patel: Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 461(7265), 754-61 (2009)
DOI: 10.1038/nature08434
PMid:19812667 PMCid:PMC2880917

8. J. J. Song, S. K. Smith, G. J. Hannon and L. Joshua-Tor: Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 305(5689), 1434-7 (2004)
DOI: 10.1126/science.1102514
PMid:15284453

9. K. Nakanishi, D. E. Weinberg, D. P. Bartel and D. J. Patel: Structure of yeast Argonaute with guide RNA. Nature, 486(7403), 368-74 (2012)
DOI: 10.1038/nature11211
PMid:22722195 PMCid:PMC3853139

10. N. T. Schirle and I. J. MacRae: The crystal structure of human Argonaute2. Science, 336(6084), 1037-40 (2012)
DOI: 10.1126/science.1221551
PMid:22539551 PMCid:PMC3521581

11. E. Elkayam, C. D. Kuhn, A. Tocilj, A. D. Haase, E. M. Greene, G. J. Hannon and L. Joshua-Tor: The structure of human argonaute-2 in complex with miR-20a. Cell, 150(1), 100-10 (2012)
DOI: 10.1016/j.cell.2012.06.021
DOI: 10.1016/j.cell.2012.05.017
PMid:22682761 PMCid:PMC3464090

12. D. C. Swarts, K. Makarova, Y. Wang, K. Nakanishi, R. F. Ketting, E. V. Koonin, D. J. Patel and J. van der Oost: The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol, 21(9), 743-53 (2014)
DOI: 10.1038/nsmb.2879
PMid:25192263 PMCid:PMC4691850

13. Y. Wang, S. Juranek, H. Li, G. Sheng, T. Tuschl and D. J. Patel: Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 456(7224), 921-6 (2008)
DOI: 10.1038/nature07666
DOI: 10.1038/454921e

14. K. S. Makarova, Y. I. Wolf, J. van der Oost and E. V. Koonin: Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct, 4, 29 (2009)
DOI: 10.1186/1745-6150-4-29
PMid:19706170 PMCid:PMC2743648

15. I. Olovnikov, K. Chan, R. Sachidanandam, D. K. Newman and A. A. Aravin: Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell, 51(5), 594-605 (2013)
DOI: 10.1016/j.molcel.2013.08.014
PMid:24034694 PMCid:PMC3809076

16. J. W. Hegge, D. C. Swarts and J. van der Oost: Prokaryotic Argonaute proteins: novel genome-editing tools? Nat Rev Microbiol, 16(1), 5-11 (2018)
DOI: 10.1038/nrmicro.2017.73
PMid:28736447

17. S. I. Grewal: RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev, 20(2), 134-41 (2010)
DOI: 10.1016/j.gde.2010.02.003
PMid:20207534 PMCid:PMC3005588

18. S. W. Chan, D. Zilberman, Z. Xie, L. K. Johansen, J. C. Carrington and S. E. Jacobsen: RNA silencing genes control de novo DNA methylation. Science, 303(5662), 1336 (2004)
DOI: 10.1126/science.1095989
PMid:14988555

19. M. W. Jones-Rhoades, D. P. Bartel and B. Bartel: MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 57, 19-53 (2006)
DOI: 10.1146/annurev.arplant.57.032905.105218
PMid:16669754

20. I. Behm-Ansmant, J. Rehwinkel, T. Doerks, A. Stark, P. Bork and E. Izaurralde: mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 20(14), 1885-98 (2006)
DOI: 10.1101/gad.1424106
PMid:16815998 PMCid:PMC1522082

21. A. A. Bazzini, M. T. Lee and A. J. Giraldez: Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 336(6078), 233-7 (2012)
DOI: 10.1126/science.1215704
PMid:22422859 PMCid:PMC3547538

22. D. P. Bartel: Metazoan MicroRNAs. Cell, 173(1), 20-51 (2018)
DOI: 10.1016/j.cell.2018.03.006
PMid:29570994 PMCid:PMC6091663

23. S. Jonas and E. Izaurralde: Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 16(7), 421-33 (2015)
DOI: 10.1038/nrg3965
PMid:26077373

24. E. M. Weick and E. A. Miska: piRNAs: from biogenesis to function. Development, 141(18), 3458-71 (2014)
DOI: 10.1242/dev.094037
PMid:25183868

25. H. Cerutti and J. A. Casas-Mollano: On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet, 50(2), 81-99 (2006)
DOI: 10.1007/s00294-006-0078-x
PMid:16691418 PMCid:PMC2583075

26. S. A. Shabalina and E. V. Koonin: Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol, 23(10), 578-87 (2008)
DOI: 10.1016/j.tree.2008.06.005
PMid:18715673 PMCid:PMC2695246

27. D. Baulcombe: RNA silencing in plants. Nature, 431(7006), 356-63 (2004)
DOI: 10.1038/nature02874
PMid:15372043

28. N. Buchon and C. Vaury: RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity (Edinb), 96(2), 195-202 (2006)
DOI: 10.1038/sj.hdy.6800789
PMid:16369574

29. M. A. Matzke and J. A. Birchler: RNAi-mediated pathways in the nucleus. Nat Rev Genet, 6(1), 24-35 (2005)
DOI: 10.1038/nrg1500
PMid:15630419

30. R. H. Plasterk: RNA silencing: the genome's immune system. Science, 296(5571), 1263-5 (2002)
DOI: 10.1126/science.1072148
PMid:12016302

31. P. M. Waterhouse, M. B. Wang and T. Lough: Gene silencing as an adaptive defence against viruses. Nature, 411(6839), 834-42 (2001)
DOI: 10.1038/35081168
PMid:11459066

32. A. G. Seto, R. E. Kingston and N. C. Lau: The coming of age for Piwi proteins. Mol Cell, 26(5), 603-9 (2007)
DOI: 10.1016/j.molcel.2007.05.021
PMid:17560367

33. J. A. Vidigal and A. Ventura: The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol, 25(3), 137-47 (2015)
DOI: 10.1016/j.tcb.2014.11.004
PMid:25484347 PMCid:PMC4344861

34. N. Wynant, D. Santos and J. Vanden Broeck: The evolution of animal Argonautes: evidence for the absence of antiviral AGO Argonautes in vertebrates. Sci Rep, 7(1), 9230 (2017)
DOI: 10.1038/s41598-017-08043-5
PMid:28835645 PMCid:PMC5569025

35. A. Sigova, N. Rhind and P. D. Zamore: A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev, 18(19), 2359-67 (2004)
DOI: 10.1101/gad.1218004
PMid:15371329 PMCid:PMC522986

36. A. H. Buck and M. Blaxter: Functional diversification of Argonautes in nematodes: an expanding universe. Biochem Soc Trans, 41(4), 881-6 (2013)
DOI: 10.1042/BST20130086
PMid:23863149 PMCid:PMC3782831

37. R. W. Williams and G. M. Rubin: ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A, 99(10), 6889-94 (2002)
DOI: 10.1073/pnas.072190799
PMid:12011447 PMCid:PMC124499

38. K. Okamura, A. Ishizuka, H. Siomi and M. C. Siomi: Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev, 18(14), 1655-66 (2004)
DOI: 10.1101/gad.1210204
PMid:15231716 PMCid:PMC478188

39. H. Vaucheret, F. Vazquez, P. Crete and D. P. Bartel: The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 18(10), 1187-97 (2004)
DOI: 10.1101/gad.1201404
PMid:15131082 PMCid:PMC415643

40. D. Zilberman, X. Cao and S. E. Jacobsen: ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607), 716-9 (2003)
DOI: 10.1126/science.1079695
PMid:12522258

41. G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng and T. Tuschl: Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 15(2), 185-97 (2004)
DOI: 10.1016/j.molcel.2004.07.007
PMid:15260970

42. J. Liu, M. A. Carmell, F. V. Rivas, C. G. Marsden, J. M. Thomson, J. J. Song, S. M. Hammond, L. Joshua-Tor and G. J. Hannon: Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305(5689), 1437-41 (2004)
DOI: 10.1126/science.1102513
PMid:15284456

43. J. Hauptmann, A. Dueck, S. Harlander, J. Pfaff, R. Merkl and G. Meister: Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol, 20(7), 814-7 (2013)
DOI: 10.1038/nsmb.2577
PMid:23665583

44. K. Nakanishi, M. Ascano, T. Gogakos, S. Ishibe-Murakami, A. A. Serganov, D. Briskin, P. Morozov, T. Tuschl and D. J. Patel: Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep, 3(6), 1893-900 (2013)
DOI: 10.1016/j.celrep.2013.06.010
PMid:23809764 PMCid:PMC3757560

45. C. R. Faehnle, E. Elkayam, A. D. Haase, G. J. Hannon and L. Joshua-Tor: The making of a slicer: activation of human Argonaute-1. Cell Rep, 3(6), 1901-9 (2013)
DOI: 10.1016/j.celrep.2013.05.033
PMid:23746446 PMCid:PMC3769929

46. N. Schurmann, L. G. Trabuco, C. Bender, R. B. Russell and D. Grimm: Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol, 20(7), 818-26 (2013)
DOI: 10.1038/nsmb.2607
PMid:23748378

47. J. Hauptmann, L. Kater, P. Loffler, R. Merkl and G. Meister: Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA, 20(10), 1532-8 (2014)
DOI: 10.1261/rna.045203.114
PMid:25114291 PMCid:PMC4174435

48. J. K. Hur, M. K. Zinchenko, S. Djuranovic and R. Green: Regulation of Argonaute slicer activity by guide RNA 3' end interactions with the N-terminal lobe. J Biol Chem, 288(11), 7829-40 (2013)
DOI: 10.1074/jbc.M112.441030
PMid:23329841 PMCid:PMC3597821

49. P. B. Kwak and Y. Tomari: The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol, 19(2), 145-51 (2012)
DOI: 10.1038/nsmb.2232
PMid:22233755

50. M. S. Park, H. D. Phan, F. Busch, S. H. Hinckley, J. A. Brackbill, V. H. Wysocki and K. Nakanishi: Human Argonaute3 has slicer activity. Nucleic Acids Res, 45(20), 11867-11877 (2017)
DOI: 10.1093/nar/gkx916
PMid:29040713 PMCid:PMC5714244

51. Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim and V. N. Kim: The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415-9 (2003)
DOI: 10.1038/nature01957
PMid:14508493

52. T. A. Nguyen, M. H. Jo, Y. G. Choi, J. Park, S. C. Kwon, S. Hohng, V. N. Kim and J. S. Woo: Functional Anatomy of the Human Microprocessor. Cell, 161(6), 1374-87 (2015)
DOI: 10.1016/j.cell.2015.05.010
PMid:26027739

53. R. Yi, Y. Qin, I. G. Macara and B. R. Cullen: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17(24), 3011-6 (2003)
DOI: 10.1101/gad.1158803
PMid:14681208 PMCid:PMC305252

54. E. Bernstein, A. A. Caudy, S. M. Hammond and G. J. Hannon: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363-6 (2001)
DOI: 10.1038/35053110
PMid:11201747

55. J. E. Babiarz, J. G. Ruby, Y. Wang, D. P. Bartel and R. Blelloch: Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev, 22(20), 2773-85 (2008)
DOI: 10.1101/gad.1705308
PMid:18923076 PMCid:PMC2569885

56. A. Smardon, J. M. Spoerke, S. C. Stacey, M. E. Klein, N. Mackin and E. M. Maine: EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol, 10(4), 169-78 (2000)
DOI: 10.1016/S0960-9822(00)00323-7

57. T. Sijen, J. Fleenor, F. Simmer, K. L. Thijssen, S. Parrish, L. Timmons, R. H. Plasterk and A. Fire: On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107(4), 465-76 (2001)
DOI: 10.1016/S0092-8674(01)00576-1

58. A. Smialowska, I. Djupedal, J. Wang, P. Kylsten, P. Swoboda and K. Ekwall: RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe. Biochem Biophys Res Commun, 444(2), 254-9 (2014)
DOI: 10.1016/j.bbrc.2014.01.057
PMid:24462781

59. B. Czech, C. D. Malone, R. Zhou, A. Stark, C. Schlingeheyde, M. Dus, N. Perrimon, M. Kellis, J. A. Wohlschlegel, R. Sachidanandam, G. J. Hannon and J. Brennecke: An endogenous small interfering RNA pathway in Drosophila. Nature, 453(7196), 798-802 (2008)
DOI: 10.1038/nature07007
PMid:18463631 PMCid:PMC2895258

60. K. Okamura, W. J. Chung, J. G. Ruby, H. Guo, D. P. Bartel and E. C. Lai: The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature, 453(7196), 803-6 (2008)
DOI: 10.1038/nature07015
PMid:18463630 PMCid:PMC2735555

61. M. Ghildiyal, H. Seitz, M. D. Horwich, C. Li, T. Du, S. Lee, J. Xu, E. L. Kittler, M. L. Zapp, Z. Weng and P. D. Zamore: Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science, 320(5879), 1077-81 (2008)
DOI: 10.1126/science.1157396
PMid:18403677 PMCid:PMC2953241

62. T. Watanabe, Y. Totoki, A. Toyoda, M. Kaneda, S. Kuramochi-Miyagawa, Y. Obata, H. Chiba, Y. Kohara, T. Kono, T. Nakano, M. A. Surani, Y. Sakaki and H. Sasaki: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 453(7194), 539-43 (2008)
DOI: 10.1038/nature06908
PMid:18404146

63. K. Kim, Y. S. Lee, D. Harris, K. Nakahara and R. W. Carthew: The RNAi pathway initiated by Dicer-2 in Drosophila. Cold Spring Harb Symp Quant Biol, 71, 39-44 (2006)
DOI: 10.1101/sqb.2006.71.008
PMid:17381278

64. K. Okamura, S. Balla, R. Martin, N. Liu and E. C. Lai: Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol, 15(6), 581-90 (2008)
DOI: 10.1038/nsmb.1438
PMid:18500351 PMCid:PMC2713754

65. Y. Kawamura, K. Saito, T. Kin, Y. Ono, K. Asai, T. Sunohara, T. N. Okada, M. C. Siomi and H. Siomi: Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature, 453(7196), 793-7 (2008)
DOI: 10.1038/nature06938
PMid:18463636

66. W. J. Chung, K. Okamura, R. Martin and E. C. Lai: Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol, 18(11), 795-802 (2008)
DOI: 10.1016/j.cub.2008.05.006
PMid:18501606 PMCid:PMC2812477

67. J. Wen, H. Duan, F. Bejarano, K. Okamura, L. Fabian, J. A. Brill, D. Bortolamiol-Becet, R. Martin, J. G. Ruby and E. C. Lai: Adaptive regulation of testis gene expression and control of male fertility by the Drosophila hairpin RNA pathway. [Corrected]. Mol Cell, 57(1), 165-78 (2015)
DOI: 10.1016/j.molcel.2014.11.025
PMid:25544562 PMCid:PMC4289472

68. C. J. Lin, F. Hu, R. Dubruille, J. Vedanayagam, J. Wen, P. Smibert, B. Loppin and E. C. Lai: The hpRNA/RNAi Pathway Is Essential to Resolve Intragenomic Conflict in the Drosophila Male Germline. Dev Cell, 46(3), 316-326 e5 (2018)
DOI: 10.1016/j.devcel.2018.07.004
PMid:30086302

69. O. H. Tam, A. A. Aravin, P. Stein, A. Girard, E. P. Murchison, S. Cheloufi, E. Hodges, M. Anger, R. Sachidanandam, R. M. Schultz and G. J. Hannon: Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 453(7194), 534-8 (2008)
DOI: 10.1038/nature06904
PMid:18404147 PMCid:PMC2981145

70. M. P. Gantier and B. R. Williams: The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev, 18(5-6), 363-71 (2007)
DOI: 10.1016/j.cytogfr.2007.06.016
PMid:17698400 PMCid:PMC2084215

71. P. V. Maillard, A. G. Van der Veen, S. Deddouche-Grass, N. C. Rogers, A. Merits and C. Reis e Sousa: Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J, 35(23), 2505-2518 (2016)
DOI: 10.15252/embj.201695086
PMid:27815315 PMCid:PMC5167344

72. A. G. van der Veen, P. V. Maillard, J. M. Schmidt, S. A. Lee, S. Deddouche-Grass, A. Borg, S. Kjaer, A. P. Snijders and C. Reis e Sousa: The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J, 37(4) (2018)
DOI: 10.15252/embj.201797479
PMid:29351913 PMCid:PMC5813259

73. F. Wianny and M. Zernicka-Goetz: Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol, 2(2), 70-5 (2000)
DOI: 10.1038/35000016
PMid:10655585

74. P. Stein, F. Zeng, H. Pan and R. M. Schultz: Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol, 286(2), 464-71 (2005)
DOI: 10.1016/j.ydbio.2005.08.015
PMid:16154556

75. N. Suh, L. Baehner, F. Moltzahn, C. Melton, A. Shenoy, J. Chen and R. Blelloch: MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol, 20(3), 271-7 (2010)
DOI: 10.1016/j.cub.2009.12.044
PMid:20116247 PMCid:PMC2872512

76. J. Ma, M. Flemr, P. Stein, P. Berninger, R. Malik, M. Zavolan, P. Svoboda and R. M. Schultz: MicroRNA activity is suppressed in mouse oocytes. Curr Biol, 20(3), 265-70 (2010)
DOI: 10.1016/j.cub.2009.12.042
PMid:20116252 PMCid:PMC2824427

77. L. Chen, J. E. Dahlstrom, S. H. Lee and D. Rangasamy: Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics, 7(7), 758-71 (2012)
DOI: 10.4161/epi.20706
PMid:22647391

78. R. V. Berrens, S. Andrews, D. Spensberger, F. Santos, W. Dean, P. Gould, J. Sharif, N. Olova, T. Chandra, H. Koseki, F. von Meyenn and W. Reik: An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Global DNA Demethylation in Embryonic Stem Cells. Cell Stem Cell, 21(5), 694-703 e7 (2017)
DOI: 10.1016/j.stem.2017.10.004
PMid:29100015 PMCid:PMC5678422

79. E. Ma, I. J. MacRae, J. F. Kirsch and J. A. Doudna: Autoinhibition of human dicer by its internal helicase domain. J Mol Biol, 380(1), 237-43 (2008)
DOI: 10.1016/j.jmb.2008.05.005
PMid:18508075 PMCid:PMC2927216

80. P. W. Lau, K. Z. Guiley, N. De, C. S. Potter, B. Carragher and I. J. MacRae: The molecular architecture of human Dicer. Nat Struct Mol Biol, 19(4), 436-40 (2012)
DOI: 10.1038/nsmb.2268
PMid:22426548 PMCid:PMC3319852

81. M. Flemr, R. Malik, V. Franke, J. Nejepinska, R. Sedlacek, K. Vlahovicek and P. Svoboda: A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell, 155(4), 807-16 (2013)
DOI: 10.1016/j.cell.2013.10.001
PMid:24209619

82. E. M. Kennedy, A. W. Whisnant, A. V. Kornepati, J. B. Marshall, H. P. Bogerd and B. R. Cullen: Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc Natl Acad Sci U S A, 112(50), E6945-54 (2015)
DOI: 10.1073/pnas.1513421112
PMid:26621737 PMCid:PMC4687602

83. C. Matranga, Y. Tomari, C. Shin, D. P. Bartel and P. D. Zamore: Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4), 607-20 (2005)
DOI: 10.1016/j.cell.2005.08.044
PMid:16271386

84. K. Miyoshi, H. Tsukumo, T. Nagami, H. Siomi and M. C. Siomi: Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev, 19(23), 2837-48 (2005)
DOI: 10.1101/gad.1370605
PMid:16287716 PMCid:PMC1315391

85. P. J. Leuschner, S. L. Ameres, S. Kueng and J. Martinez: Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep, 7(3), 314-20 (2006)
DOI: 10.1038/sj.embor.7400637
PMid:16439995 PMCid:PMC1456892

86. T. Kawamata, H. Seitz and Y. Tomari: Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol, 16(9), 953-60 (2009)
DOI: 10.1038/nsmb.1630
PMid:19684602

87. M. Yoda, T. Kawamata, Z. Paroo, X. Ye, S. Iwasaki, Q. Liu and Y. Tomari: ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol, 17(1), 17-23 (2010)
DOI: 10.1038/nsmb.1733
PMid:19966796 PMCid:PMC2915567

88. T. Iki, M. Yoshikawa, M. Nishikiori, M. C. Jaudal, E. Matsumoto-Yokoyama, I. Mitsuhara, T. Meshi and M. Ishikawa: In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell, 39(2), 282-91 (2010)
DOI: 10.1016/j.molcel.2010.05.014
PMid:20605502

89. S. Iwasaki, M. Kobayashi, M. Yoda, Y. Sakaguchi, S. Katsuma, T. Suzuki and Y. Tomari: Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell, 39(2), 292-9 (2010)
DOI: 10.1016/j.molcel.2010.05.015
PMid:20605501

90. T. Miyoshi, A. Takeuchi, H. Siomi and M. C. Siomi: A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol, 17(8), 1024-6 (2010)
DOI: 10.1038/nsmb.1875
PMid:20639883

91. M. Johnston, M. C. Geoffroy, A. Sobala, R. Hay and G. Hutvagner: HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell, 21(9), 1462-9 (2010)
DOI: 10.1091/mbc.e09-10-0885
PMid:20237157 PMCid:PMC2861606

92. Y. Tomari and P. D. Zamore: Perspective: machines for RNAi. Genes Dev, 19(5), 517-29 (2005)
DOI: 10.1101/gad.1284105
PMid:15741316

93. G. Meister and T. Tuschl: Mechanisms of gene silencing by double-stranded RNA. Nature, 431(7006), 343-9 (2004)
DOI: 10.1038/nature02873
PMid:15372041

94. D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin and P. D. Zamore: Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2), 199-208 (2003)
DOI: 10.1016/S0092-8674(03)00759-1

95. A. Khvorova, A. Reynolds and S. D. Jayasena: Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2), 209-16 (2003)
DOI: 10.1016/S0092-8674(03)00801-8

96. Q. Liu, T. A. Rand, S. Kalidas, F. Du, H. E. Kim, D. P. Smith and X. Wang: R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science, 301(5641), 1921-5 (2003)
DOI: 10.1126/science.1088710
PMid:14512631

97. X. Liu, F. Jiang, S. Kalidas, D. Smith and Q. Liu: Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA, 12(8), 1514-20 (2006)
DOI: 10.1261/rna.101606
PMid:16775303 PMCid:PMC1524895

98. Y. S. Lee, K. Nakahara, J. W. Pham, K. Kim, Z. He, E. J. Sontheimer and R. W. Carthew: Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117(1), 69-81 (2004)
DOI: 10.1016/S0092-8674(04)00261-2

99. Y. Tomari, C. Matranga, B. Haley, N. Martinez and P. D. Zamore: A protein sensor for siRNA asymmetry. Science, 306(5700), 1377-80 (2004)
DOI: 10.1126/science.1102755
PMid:15550672

100. Y. Tomari, T. Du, B. Haley, D. S. Schwarz, R. Bennett, H. A. Cook, B. S. Koppetsch, W. E. Theurkauf and P. D. Zamore: RISC assembly defects in the Drosophila RNAi mutant armitage. Cell, 116(6), 831-41 (2004)
DOI: 10.1016/S0092-8674(04)00218-1

101. S. Iwasaki, H. M. Sasaki, Y. Sakaguchi, T. Suzuki, H. Tadakuma and Y. Tomari: Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature, 521(7553), 533-6 (2015)
DOI: 10.1038/nature14254
PMid:25822791

102. J. W. Pham, J. L. Pellino, Y. S. Lee, R. W. Carthew and E. J. Sontheimer: A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell, 117(1), 83-94 (2004)
DOI: 10.1016/S0092-8674(04)00258-2

103. J. G. Betancur and Y. Tomari: Dicer is dispensable for asymmetric RISC loading in mammals. RNA, 18(1), 24-30 (2012)
DOI: 10.1261/rna.029785.111
PMid:22106413 PMCid:PMC3261740

104. C. Kanellopoulou, S. A. Muljo, A. L. Kung, S. Ganesan, R. Drapkin, T. Jenuwein, D. M. Livingston and K. Rajewsky: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 19(4), 489-501 (2005)
DOI: 10.1101/gad.1248505
PMid:15713842 PMCid:PMC548949

105. E. P. Murchison, J. F. Partridge, O. H. Tam, S. Cheloufi and G. J. Hannon: Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A, 102(34), 12135-40 (2005)
DOI: 10.1073/pnas.0505479102
PMid:16099834 PMCid:PMC1185572

106. X. Ye, N. Huang, Y. Liu, Z. Paroo, C. Huerta, P. Li, S. Chen, Q. Liu and H. Zhang: Structure of C3PO and mechanism of human RISC activation. Nat Struct Mol Biol, 18(6), 650-7 (2011)
DOI: 10.1038/nsmb.2032
PMid:21552258 PMCid:PMC3109212

107. A. J. Giraldez, Y. Mishima, J. Rihel, R. J. Grocock, S. Van Dongen, K. Inoue, A. J. Enright and A. F. Schier: Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312(5770), 75-9 (2006)
DOI: 10.1126/science.1122689
PMid:16484454

108. T. P. Chendrimada, R. I. Gregory, E. Kumaraswamy, J. Norman, N. Cooch, K. Nishikura and R. Shiekhattar: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740-4 (2005)
DOI: 10.1038/nature03868
PMid:15973356 PMCid:PMC2944926

109. A. D. Haase, L. Jaskiewicz, H. Zhang, S. Laine, R. Sack, A. Gatignol and W. Filipowicz: TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep, 6(10), 961-7 (2005)
DOI: 10.1038/sj.embor.7400509
PMid:16142218 PMCid:PMC1369185

110. Y. Lee, I. Hur, S. Y. Park, Y. K. Kim, M. R. Suh and V. N. Kim: The role of PACT in the RNA silencing pathway. EMBO J, 25(3), 522-32 (2006)
DOI: 10.1038/sj.emboj.7600942
PMid:16424907 PMCid:PMC1383527

111. I. J. MacRae, E. Ma, M. Zhou, C. V. Robinson and J. A. Doudna: In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A, 105(2), 512-7 (2008)
DOI: 10.1073/pnas.0710869105
PMid:18178619 PMCid:PMC2206567

112. H. W. Wang, C. Noland, B. Siridechadilok, D. W. Taylor, E. Ma, K. Felderer, J. A. Doudna and E. Nogales: Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol, 16(11), 1148-53 (2009)
DOI: 10.1038/nsmb.1673
PMid:19820710 PMCid:PMC2845538

113. R. I. Gregory, T. P. Chendrimada, N. Cooch and R. Shiekhattar: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123(4), 631-40 (2005)
DOI: 10.1016/j.cell.2005.10.022
PMid:16271387

114. K. Forstemann, Y. Tomari, T. Du, V. V. Vagin, A. M. Denli, D. P. Bratu, C. Klattenhoff, W. E. Theurkauf and P. D. Zamore: Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol, 3(7), e236 (2005)
DOI: 10.1371/journal.pbio.0030236
PMid:15918770 PMCid:PMC1141267

115. F. Jiang, X. Ye, X. Liu, L. Fincher, D. McKearin and Q. Liu: Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev, 19(14), 1674-9 (2005)
DOI: 10.1101/gad.1334005
PMid:15985611 PMCid:PMC1176004

116. K. Saito, A. Ishizuka, H. Siomi and M. C. Siomi: Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol, 3(7), e235 (2005)
DOI: 10.1371/journal.pbio.0030235
PMid:15918769 PMCid:PMC1141268

117. C. L. Noland, E. Ma and J. A. Doudna: siRNA repositioning for guide strand selection by human Dicer complexes. Mol Cell, 43(1), 110-21 (2011)
DOI: 10.1016/j.molcel.2011.05.028
PMid:21726814 PMCid:PMC3143821

118. J. N. Tants, S. Fesser, T. Kern, R. Stehle, A. Geerlof, C. Wunderlich, M. Juen, C. Hartlmuller, R. Bottcher, S. Kunzelmann, O. Lange, C. Kreutz, K. Forstemann and M. Sattler: Molecular basis for asymmetry sensing of siRNAs by the Drosophila Loqs-PD/Dcr-2 complex in RNA interference. Nucleic Acids Res, 45(21), 12536-12550 (2017)
DOI: 10.1093/nar/gkx886
PMid:29040648 PMCid:PMC5716069

119. H. Seitz, M. Ghildiyal and P. D. Zamore: Argonaute loading improves the 5' precision of both MicroRNAs and their miRNA* strands in flies. Curr Biol, 18(2), 147-51 (2008)
DOI: 10.1016/j.cub.2007.12.049
PMid:18207740 PMCid:PMC2854039

120. H. Y. Hu, Z. Yan, Y. Xu, H. Hu, C. Menzel, Y. H. Zhou, W. Chen and P. Khaitovich: Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics, 10, 413 (2009)
DOI: 10.1186/1471-2164-10-413
PMid:19732433 PMCid:PMC2751786

121. F. Frank, N. Sonenberg and B. Nagar: Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature, 465(7299), 818-22 (2010)
DOI: 10.1038/nature09039
PMid:20505670

122. M. Ghildiyal, J. Xu, H. Seitz, Z. Weng and P. D. Zamore: Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA, 16(1), 43-56 (2010)
DOI: 10.1261/rna.1972910
PMid:19917635 PMCid:PMC2802036

123. B. Czech, R. Zhou, Y. Erlich, J. Brennecke, R. Binari, C. Villalta, A. Gordon, N. Perrimon and G. J. Hannon: Hierarchical rules for Argonaute loading in Drosophila. Mol Cell, 36(3), 445-56 (2009)
DOI: 10.1016/j.molcel.2009.09.028
PMid:19917252 PMCid:PMC2795325

124. S. Yekta, I. H. Shih and D. P. Bartel: MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304(5670), 594-6 (2004)
DOI: 10.1126/science.1097434
PMid:15105502

125. K. Forstemann, M. D. Horwich, L. Wee, Y. Tomari and P. D. Zamore: Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell, 130(2), 287-97 (2007)
DOI: 10.1016/j.cell.2007.05.056
PMid:17662943 PMCid:PMC2686109

126. Y. Tomari, T. Du and P. D. Zamore: Sorting of Drosophila small silencing RNAs. Cell, 130(2), 299-308 (2007)
DOI: 10.1016/j.cell.2007.05.057
PMid:17662944 PMCid:PMC2841505

127. D. Wang, Z. Zhang, E. O'Loughlin, T. Lee, S. Houel, D. O'Carroll, A. Tarakhovsky, N. G. Ahn and R. Yi: Quantitative functions of Argonaute proteins in mammalian development. Genes Dev, 26(7), 693-704 (2012)
DOI: 10.1101/gad.182758.111
PMid:22474261 PMCid:PMC3323880

128. S. Petri, A. Dueck, G. Lehmann, N. Putz, S. Rudel, E. Kremmer and G. Meister: Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA, 17(4), 737-49 (2011)
DOI: 10.1261/rna.2348111
PMid:21367974 PMCid:PMC3062184

129. A. Dueck, C. Ziegler, A. Eichner, E. Berezikov and G. Meister: microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res, 40(19), 9850-62 (2012)
DOI: 10.1093/nar/gks705
PMid:22844086 PMCid:PMC3479175

130. D. P. Bartel: MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-33 (2009)
DOI: 10.1016/j.cell.2009.01.002
PMid:19167326 PMCid:PMC3794896

131. S. W. Chi, J. B. Zang, A. Mele and R. B. Darnell: Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254), 479-86 (2009)
DOI: 10.1038/nature08170
PMid:19536157 PMCid:PMC2733940

132. J. Li, T. Kim, R. Nutiu, D. Ray, T. R. Hughes and Z. Zhang: Identifying mRNA sequence elements for target recognition by human Argonaute proteins. Genome Res, 24(5), 775-85 (2014)
DOI: 10.1101/gr.162230.113
PMid:24663241 PMCid:PMC4009607

133. D. Baek, J. Villen, C. Shin, F. D. Camargo, S. P. Gygi and D. P. Bartel: The impact of microRNAs on protein output. Nature, 455(7209), 64-71 (2008)
DOI: 10.1038/nature07242
PMid:18668037 PMCid:PMC2745094

134. M. Selbach, B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin and N. Rajewsky: Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58-63 (2008)
DOI: 10.1038/nature07228
PMid:18668040

135. A. Zielezinski and W. M. Karlowski: Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol, 12(7), 761-70 (2015)
DOI: 10.1080/15476286.2015.1051302
PMid:26106978 PMCid:PMC4615383

136. A. Eulalio, F. Tritschler and E. Izaurralde: The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA, 15(8), 1433-42 (2009)
DOI: 10.1261/rna.1703809
PMid:19535464 PMCid:PMC2714752

137. L. Ding and M. Han: GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol, 17(8), 411-6 (2007)
DOI: 10.1016/j.tcb.2007.06.003
PMid:17766119

138. H. O. Iwakawa and Y. Tomari: Molecular insights into microRNA-mediated translational repression in plants. Mol Cell, 52(4), 591-601 (2013)
DOI: 10.1016/j.molcel.2013.10.033
PMid:24267452

139. Q. Liu, F. Wang and M. J. Axtell: Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell, 26(2), 741-53 (2014)
DOI: 10.1105/tpc.113.120972
PMid:24510721 PMCid:PMC3967037

140. P. Brodersen, L. Sakvarelidze-Achard, M. Bruun-Rasmussen, P. Dunoyer, Y. Y. Yamamoto, L. Sieburth and O. Voinnet: Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320(5880), 1185-90 (2008)
DOI: 10.1126/science.1159151
PMid:18483398

141. R. S. Reis, G. Hart-Smith, A. L. Eamens, M. R. Wilkins and P. M. Waterhouse: Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat Plants, 1, 14027 (2015)
DOI: 10.1038/nplants.2014.27
PMid:27246880

142. L. Yang, G. Wu and R. S. Poethig: Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci U S A, 109(1), 315-20 (2012)
DOI: 10.1073/pnas.1114673109
PMid:22184231 PMCid:PMC3252893

143. J. T. Zipprich, S. Bhattacharyya, H. Mathys and W. Filipowicz: Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA, 15(5), 781-93 (2009)
DOI: 10.1261/rna.1448009
PMid:19304925 PMCid:PMC2673060

144. D. Lazzaretti, I. Tournier and E. Izaurralde: The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA, 15(6), 1059-66 (2009)
DOI: 10.1261/rna.1606309
PMid:19383768 PMCid:PMC2685519

145. S. L. Lian, S. Li, G. X. Abadal, B. A. Pauley, M. J. Fritzler and E. K. Chan: The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA, 15(5), 804-13 (2009)
DOI: 10.1261/rna.1229409
PMid:19324964 PMCid:PMC2673069

146. K. Takimoto, M. Wakiyama and S. Yokoyama: Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA, 15(6), 1078-89 (2009)
DOI: 10.1261/rna.1363109
PMid:19398495 PMCid:PMC2685530

147. S. Till, E. Lejeune, R. Thermann, M. Bortfeld, M. Hothorn, D. Enderle, C. Heinrich, M. W. Hentze and A. G. Ladurner: A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol, 14(10), 897-903 (2007)
DOI: 10.1038/nsmb1302
PMid:17891150

148. E. Elkayam, C. R. Faehnle, M. Morales, J. Sun, H. Li and L. Joshua-Tor: Multivalent Recruitment of Human Argonaute by GW182. Mol Cell, 67(4), 646-658 e3 (2017)
DOI: 10.1016/j.molcel.2017.07.007
PMid:28781232 PMCid:PMC5915679

149. J. Hauptmann, D. Schraivogel, A. Bruckmann, S. Manickavel, L. Jakob, N. Eichner, J. Pfaff, M. Urban, S. Sprunck, M. Hafner, T. Tuschl, R. Deutzmann and G. Meister: Biochemical isolation of Argonaute protein complexes by Ago-APP. Proc Natl Acad Sci U S A, 112(38), 11841-5 (2015)
DOI: 10.1073/pnas.1506116112
PMid:26351695 PMCid:PMC4586862

150. L. M. Wee, C. F. Flores-Jasso, W. E. Salomon and P. D. Zamore: Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell, 151(5), 1055-67 (2012)
DOI: 10.1016/j.cell.2012.10.036
PMid:23178124 PMCid:PMC3595543

151. R. Denzler, S. E. McGeary, A. C. Title, V. Agarwal, D. P. Bartel and M. Stoffel: Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression. Mol Cell, 64(3), 565-579 (2016)
DOI: 10.1016/j.molcel.2016.09.027
PMid:27871486 PMCid:PMC5101187

152. J. G. Doench, C. P. Petersen and P. A. Sharp: siRNAs can function as miRNAs. Genes Dev, 17(4), 438-42 (2003)
DOI: 10.1101/gad.1064703
PMid:12600936 PMCid:PMC195999

153. R. S. Pillai, C. G. Artus and W. Filipowicz: Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA, 10(10), 1518-25 (2004)
DOI: 10.1261/rna.7131604
PMid:15337849 PMCid:PMC1370638

154. A. Grimson, K. K. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim and D. P. Bartel: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27(1), 91-105 (2007)
DOI: 10.1016/j.molcel.2007.06.017
PMid:17612493 PMCid:PMC3800283

155. P. Saetrom, B. S. Heale, O. Snove, Jr., L. Aagaard, J. Alluin and J. J. Rossi: Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res, 35(7), 2333-42 (2007)
DOI: 10.1093/nar/gkm133
PMid:17389647 PMCid:PMC1874663

156. W. P. Kloosterman, E. Wienholds, R. F. Ketting and R. H. Plasterk: Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res, 32(21), 6284-91 (2004)
DOI: 10.1093/nar/gkh968
PMid:15585662 PMCid:PMC535676

157. E. Huntzinger and E. Izaurralde: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 12(2), 99-110 (2011)
DOI: 10.1038/nrg2936
PMid:21245828

158. M. R. Fabian and N. Sonenberg: The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol, 19(6), 586-93 (2012)
DOI: 10.1038/nsmb.2296
PMid:22664986

159. E. Wahle and G. S. Winkler: RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta, 1829(6-7), 561-70 (2013)
DOI: 10.1016/j.bbagrm.2013.01.003
PMid:23337855

160. M. Christie, A. Boland, E. Huntzinger, O. Weichenrieder and E. Izaurralde: Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Mol Cell, 51(3), 360-73 (2013)
DOI: 10.1016/j.molcel.2013.07.011
PMid:23932717

161. Y. Chen, A. Boland, D. Kuzuoglu-Ozturk, P. Bawankar, B. Loh, C. T. Chang, O. Weichenrieder and E. Izaurralde: A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell, 54(5), 737-50 (2014)
DOI: 10.1016/j.molcel.2014.03.034
PMid:24768540

162. H. Mathys, J. Basquin, S. Ozgur, M. Czarnocki-Cieciura, F. Bonneau, A. Aartse, A. Dziembowski, M. Nowotny, E. Conti and W. Filipowicz: Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell, 54(5), 751-65 (2014)
DOI: 10.1016/j.molcel.2014.03.036
PMid:24768538

163. C. Y. Chen, D. Zheng, Z. Xia and A. B. Shyu: Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol, 16(11), 1160-6 (2009)
DOI: 10.1038/nsmb.1709
PMid:19838187 PMCid:PMC2921184

164. J. E. Braun, E. Huntzinger, M. Fauser and E. Izaurralde: GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell, 44(1), 120-33 (2011)
DOI: 10.1016/j.molcel.2011.09.007
PMid:21981923

165. E. Huntzinger, D. Kuzuoglu-Ozturk, J. E. Braun, A. Eulalio, L. Wohlbold and E. Izaurralde: The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res, 41(2), 978-94 (2013)
DOI: 10.1093/nar/gks1078
PMid:23172285 PMCid:PMC3553986

166. N. Siddiqui, D. A. Mangus, T. C. Chang, J. M. Palermino, A. B. Shyu and K. Gehring: Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J Biol Chem, 282(34), 25067-75 (2007)
DOI: 10.1074/jbc.M701256200
PMid:17595167

167. F. Moretti, C. Kaiser, A. Zdanowicz-Specht and M. W. Hentze: PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol, 19(6), 603-8 (2012)
DOI: 10.1038/nsmb.2309
PMid:22635249

168. T. Fukaya and Y. Tomari: PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J, 30(24), 4998-5009 (2011)
DOI: 10.1038/emboj.2011.426
PMid:22117217 PMCid:PMC3243625

169. Y. Mishima, A. Fukao, T. Kishimoto, H. Sakamoto, T. Fujiwara and K. Inoue: Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc Natl Acad Sci U S A, 109(4), 1104-9 (2012)
DOI: 10.1073/pnas.1113350109
PMid:22232654 PMCid:PMC3268308

170. J. E. Braun, V. Truffault, A. Boland, E. Huntzinger, C. T. Chang, G. Haas, O. Weichenrieder, M. Coles and E. Izaurralde: A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation. Nat Struct Mol Biol, 19(12), 1324-31 (2012)
DOI: 10.1038/nsmb.2413
PMid:23142987

171. H. Guo, N. T. Ingolia, J. S. Weissman and D. P. Bartel: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835-40 (2010)
DOI: 10.1038/nature09267
PMid:20703300 PMCid:PMC2990499

172. S. W. Eichhorn, H. Guo, S. E. McGeary, R. A. Rodriguez-Mias, C. Shin, D. Baek, S. H. Hsu, K. Ghoshal, J. Villen and D. P. Bartel: mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell, 56(1), 104-15 (2014)
DOI: 10.1016/j.molcel.2014.08.028
PMid:25263593 PMCid:PMC4292926

173. H. A. Meijer, Y. W. Kong, W. T. Lu, A. Wilczynska, R. V. Spriggs, S. W. Robinson, J. D. Godfrey, A. E. Willis and M. Bushell: Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science, 340(6128), 82-5 (2013)
DOI: 10.1126/science.1231197
PMid:23559250

174. A. O. Subtelny, S. W. Eichhorn, G. R. Chen, H. Sive and D. P. Bartel: Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature, 508(7494), 66-71 (2014)
DOI: 10.1038/nature13007
PMid:24476825 PMCid:PMC4086860

175. G. La Rocca, S. H. Olejniczak, A. J. Gonzalez, D. Briskin, J. A. Vidigal, L. Spraggon, R. G. DeMatteo, M. R. Radler, T. Lindsten, A. Ventura, T. Tuschl, C. S. Leslie and C. B. Thompson: In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci U S A, 112(3), 767-72 (2015)
DOI: 10.1073/pnas.1424217112
PMid:25568082 PMCid:PMC4311832

176. S. H. Olejniczak, G. La Rocca, J. J. Gruber and C. B. Thompson: Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses. Proc Natl Acad Sci U S A, 110(1), 157-62 (2013)
DOI: 10.1073/pnas.1219958110
PMid:23248281 PMCid:PMC3538211

177. S. H. Olejniczak, G. La Rocca, M. R. Radler, S. M. Egan, Q. Xiang, R. Garippa and C. B. Thompson: Coordinated Regulation of Cap-Dependent Translation and MicroRNA Function by Convergent Signaling Pathways. Mol Cell Biol, 36(18), 2360-73 (2016)
DOI: 10.1128/MCB.01011-15
PMid:27354062 PMCid:PMC5007797

178. K. S. Bridge, K. M. Shah, Y. Li, D. E. Foxler, S. C. K. Wong, D. C. Miller, K. M. Davidson, J. G. Foster, R. Rose, M. R. Hodgkinson, P. S. Ribeiro, A. A. Aboobaker, K. Yashiro, X. Wang, P. R. Graves, M. J. Plevin, D. Lagos and T. V. Sharp: Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins. Cell Rep, 20(1), 173-187 (2017)
DOI: 10.1016/j.celrep.2017.06.027
PMid:28683311 PMCid:PMC5507773

179. T. Fukaya and Y. Tomari: MicroRNAs mediate gene silencing via multiple different pathways in drosophila. Mol Cell, 48(6), 825-36 (2012)
DOI: 10.1016/j.molcel.2012.09.024
PMid:23123195

180. F. V. Rivas, N. H. Tolia, J. J. Song, J. P. Aragon, J. Liu, G. J. Hannon and L. Joshua-Tor: Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol, 12(4), 340-9 (2005)
DOI: 10.1038/nsmb918
PMid:15800637

181. D. S. Schwarz, Y. Tomari and P. D. Zamore: The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol, 14(9), 787-91 (2004)
DOI: 10.1016/j.cub.2004.03.008
PMid:15120070

182. S. M. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel and T. Tuschl: Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 20(23), 6877-88 (2001)
DOI: 10.1093/emboj/20.23.6877
PMid:11726523 PMCid:PMC125328

183. J. B. Ma, Y. R. Yuan, G. Meister, Y. Pei, T. Tuschl and D. J. Patel: Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature, 434(7033), 666-70 (2005)
DOI: 10.1038/nature03514
PMid:15800629 PMCid:PMC4694588

184. A. Deerberg, S. Willkomm and T. Restle: Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proc Natl Acad Sci U S A, 110(44), 17850-5 (2013)
DOI: 10.1073/pnas.1217838110
PMid:24101500 PMCid:PMC3816469

185. E. Bernstein, S. Y. Kim, M. A. Carmell, E. P. Murchison, H. Alcorn, M. Z. Li, A. A. Mills, S. J. Elledge, K. V. Anderson and G. J. Hannon: Dicer is essential for mouse development. Nat Genet, 35(3), 215-7 (2003)
DOI: 10.1038/ng1103-287b
DOI: 10.1038/ng1253
PMid:14528307

186. E. P. Murchison, P. Stein, Z. Xuan, H. Pan, M. Q. Zhang, R. M. Schultz and G. J. Hannon: Critical roles for Dicer in the female germline. Genes Dev, 21(6), 682-93 (2007)
DOI: 10.1101/gad.1521307
PMid:17369401 PMCid:PMC1820942

187. Y. Wang, R. Medvid, C. Melton, R. Jaenisch and R. Blelloch: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 39(3), 380-5 (2007)
DOI: 10.1038/ng1969
PMid:17259983 PMCid:PMC3008549

188. S. Cheloufi, C. O. Dos Santos, M. M. Chong and G. J. Hannon: A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298), 584-9 (2010)
DOI: 10.1038/nature09092
PMid:20424607 PMCid:PMC2995450

189. E. P. Papapetrou, J. E. Korkola and M. Sadelain: A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells, 28(2), 287-96 (2010)
DOI: 10.1002/stem.257
PMid:19911427

190. D. Cifuentes, H. Xue, D. W. Taylor, H. Patnode, Y. Mishima, S. Cheloufi, E. Ma, S. Mane, G. J. Hannon, N. D. Lawson, S. A. Wolfe and A. J. Giraldez: A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 328(5986), 1694-8 (2010)
DOI: 10.1126/science.1190809
PMid:20448148 PMCid:PMC3093307

191. D. Jee, J. S. Yang, S. M. Park, D. T. Farmer, J. Wen, T. Chou, A. Chow, M. T. McManus, M. G. Kharas and E. C. Lai: Dual Strategies for Argonaute2-Mediated Biogenesis of Erythroid miRNAs Underlie Conserved Requirements for Slicing in Mammals. Mol Cell, 69(2), 265-278 e6 (2018)
DOI: 10.1016/j.molcel.2017.12.027
PMid:29351846 PMCid:PMC5824974

192. M. Kaneda, F. Tang, D. O'Carroll, K. Lao and M. A. Surani: Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin, 2(1), 9 (2009)
DOI: 10.1186/1756-8935-2-9
PMid:19664249 PMCid:PMC2736168

193. P. Stein, N. V. Rozhkov, F. Li, F. L. Cardenas, O. Davydenko, L. E. Vandivier, B. D. Gregory, G. J. Hannon and R. M. Schultz: Essential Role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet, 11(2), e1005013 (2015)
DOI: 10.1371/journal.pgen.1005013
PMid:25695507 PMCid:PMC4335007

194. dT. Watanabe, A. Takeda, T. Tsukiyama, K. Mise, T. Okuno, H. Sasaki, N. Minami and H. Imai: Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev, 20(13), 1732-43 (2006)
DOI: 10.1101/gad.1425706
PMid:16766679 PMCid:PMC1522070

195. P. Svoboda, P. Stein, M. Anger, E. Bernstein, G. J. Hannon and R. M. Schultz: RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol, 269(1), 276-85 (2004)
DOI: 10.1016/j.ydbio.2004.01.028
PMid:15081373

196. D. Damiani, J. J. Alexander, J. R. O'Rourke, M. McManus, A. P. Jadhav, C. L. Cepko, W. W. Hauswirth, B. D. Harfe and E. Strettoi: Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci, 28(19), 4878-87 (2008)
DOI: 10.1523/JNEUROSCI.0828-08.2008
PMid:18463241 PMCid:PMC3325486

197. C. Huang, X. Wang, X. Liu, S. Cao and G. Shan: RNAi pathway participates in chromosome segregation in mammalian cells. Cell Discov, 1, 15029 (2015)
DOI: 10.1038/celldisc.2015.29
PMid:27462427 PMCid:PMC4860838

198. J. W. Pek and T. Kai: DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc Natl Acad Sci U S A, 108(29), 12007-12 (2011)
DOI: 10.1073/pnas.1106245108
PMid:21730191 PMCid:PMC3141994

199. C. Shin, J. W. Nam, K. K. Farh, H. R. Chiang, A. Shkumatava and D. P. Bartel: Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell, 38(6), 789-802 (2010)
DOI: 10.1016/j.molcel.2010.06.005
PMid:20620952 PMCid:PMC2942757

200. F. V. Karginov, S. Cheloufi, M. M. Chong, A. Stark, A. D. Smith and G. J. Hannon: Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell, 38(6), 781-8 (2010)
DOI: 10.1016/j.molcel.2010.06.001
PMid:20620951 PMCid:PMC2914474

201. E. Davis, F. Caiment, X. Tordoir, J. Cavaille, A. Ferguson-Smith, N. Cockett, M. Georges and C. Charlier: RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol, 15(8), 743-9 (2005)
DOI: 10.1016/j.cub.2005.02.060
PMid:15854907

202. X. He, Y. L. Yan, J. K. Eberhart, A. Herpin, T. U. Wagner, M. Schartl and J. H. Postlethwait: miR-196 regulates axial patterning and pectoral appendage initiation. Dev Biol, 357(2), 463-77 (2011)
DOI: 10.1016/j.ydbio.2011.07.014
PMid:21787766 PMCid:PMC3164755

203. J. Liu, M. A. Valencia-Sanchez, G. J. Hannon and R. Parker: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol, 7(7), 719-23 (2005)
DOI: 10.1038/ncb1274
PMid:15937477 PMCid:PMC1855297

204. Y. Luo, Z. Na and S. A. Slavoff: P-Bodies: Composition, Properties, and Functions. Biochemistry, 57(17), 2424-2431 (2018)
DOI: 10.1021/acs.biochem.7b01162
PMid:29381060 PMCid:PMC6296482

205. K. T. Gagnon, L. Li, Y. Chu, B. A. Janowski and D. R. Corey: RNAi factors are present and active in human cell nuclei. Cell Rep, 6(1), 211-21 (2014)
DOI: 10.1016/j.celrep.2013.12.013
PMid:24388755 PMCid:PMC3916906

206. K. T. Gagnon, L. Li, B. A. Janowski and D. R. Corey: Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc, 9(9), 2045-60 (2014)
DOI: 10.1038/nprot.2014.135
PMid:25079428 PMCid:PMC4251768

207. N. R. Sharma, X. Wang, V. Majerciak, M. Ajiro, M. Kruhlak, C. Meyers and Z. M. Zheng: Cell Type- and Tissue Context-dependent Nuclear Distribution of Human Ago2. J Biol Chem, 291(5), 2302-9 (2016)
DOI: 10.1074/jbc.C115.695049
PMid:26699195 PMCid:PMC4732213

208. J. R. Zamudio, T. J. Kelly and P. A. Sharp: Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell, 156(5), 920-34 (2014)
DOI: 10.1016/j.cell.2014.01.041
PMid:24581493 PMCid:PMC4111103

209. J. M. Claycomb, P. J. Batista, K. M. Pang, W. Gu, J. J. Vasale, J. C. van Wolfswinkel, D. A. Chaves, M. Shirayama, S. Mitani, R. F. Ketting, D. Conte, Jr. and C. C. Mello: The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell, 139(1), 123-34 (2009)
DOI: 10.1016/j.cell.2009.09.014
PMid:19804758 PMCid:PMC2766185

210. J. M. Taliaferro, J. L. Aspden, T. Bradley, D. Marwha, M. Blanchette and D. C. Rio: Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev, 27(4), 378-89 (2013)
DOI: 10.1101/gad.210708.112
PMid:23392611 PMCid:PMC3589555

211. Y. Qi, X. He, X. J. Wang, O. Kohany, J. Jurka and G. J. Hannon: Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443(7114), 1008-12 (2006)
DOI: 10.1038/nature05198
PMid:16998468

212. S. N. Pushpavalli, A. Sarkar, I. Bag, C. R. Hunt, M. J. Ramaiah, T. K. Pandita, U. Bhadra and M. Pal-Bhadra: Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis. FASEB J, 28(2), 655-66 (2014)
DOI: 10.1096/fj.13-231167
PMid:24165481 PMCid:PMC6191000

213. C. Oliver, J. L. Santos and M. Pradillo: Accurate Chromosome Segregation at First Meiotic Division Requires AGO4, a Protein Involved in RNA-Dependent DNA Methylation in Arabidopsis thaliana. Genetics, 204(2), 543-553 (2016)
DOI: 10.1534/genetics.116.189217
PMid:27466226 PMCid:PMC5068845

214. M. Durand-Dubief and P. Bastin: TbAGO1, an argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biol, 1, 2 (2003)

215. E. Yigit, P. J. Batista, Y. Bei, K. M. Pang, C. C. Chen, N. H. Tolia, L. Joshua-Tor, S. Mitani, M. J. Simard and C. C. Mello: Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell, 127(4), 747-57 (2006)
DOI: 10.1016/j.cell.2006.09.033
PMid:17110334

216. A. Gerson-Gurwitz, S. Wang, S. Sathe, R. Green, G. W. Yeo, K. Oegema and A. Desai: A Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic Divisions. Cell, 165(2), 396-409 (2016)
DOI: 10.1016/j.cell.2016.02.040
PMid:27020753 PMCid:PMC4826293

217. R. Yashiro, Y. Murota, K. M. Nishida, H. Yamashiro, K. Fujii, A. Ogai, S. Yamanaka, L. Negishi, H. Siomi and M. C. Siomi: Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell Rep, 23(12), 3647-3657 (2018)
DOI: 10.1016/j.celrep.2018.05.051
PMid:29925005

218. A. A. Sarshad, A. H. Juan, A. I. C. Muler, D. G. Anastasakis, X. Wang, P. Genzor, X. Feng, P. F. Tsai, H. W. Sun, A. D. Haase, V. Sartorelli and M. Hafner: Argonaute-miRNA Complexes Silence Target mRNAs in the Nucleus of Mammalian Stem Cells. Mol Cell, 71(6), 1040-1050 e8 (2018)
DOI: 10.1016/j.molcel.2018.07.020
PMid:30146314

219. M. Allo, V. Buggiano, J. P. Fededa, E. Petrillo, I. Schor, M. de la Mata, E. Agirre, M. Plass, E. Eyras, S. A. Elela, R. Klinck, B. Chabot and A. R. Kornblihtt: Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol, 16(7), 717-24 (2009)
DOI: 10.1038/nsmb.1620
PMid:19543290

220. M. Allo, E. Agirre, S. Bessonov, P. Bertucci, L. Gomez Acuna, V. Buggiano, N. Bellora, B. Singh, E. Petrillo, M. Blaustein, B. Minana, G. Dujardin, B. Pozzi, F. Pelisch, E. Bechara, D. E. Agafonov, A. Srebrow, R. Luhrmann, J. Valcarcel, E. Eyras and A. R. Kornblihtt: Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc Natl Acad Sci U S A, 111(44), 15622-9 (2014)
DOI: 10.1073/pnas.1416858111
PMid:25313066 PMCid:PMC4226100

221. M. Benhamed, U. Herbig, T. Ye, A. Dejean and O. Bischof: Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol, 14(3), 266-75 (2012)
DOI: 10.1038/ncb2443
PMid:22366686 PMCid:PMC5423543

222. C. L. Ahlenstiel, H. G. Lim, D. A. Cooper, T. Ishida, A. D. Kelleher and K. Suzuki: Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells. Nucleic Acids Res, 40(4), 1579-95 (2012)
DOI: 10.1093/nar/gkr891
PMid:22064859 PMCid:PMC3287199

223. B. A. Janowski, K. E. Huffman, J. C. Schwartz, R. Ram, R. Nordsell, D. S. Shames, J. D. Minna and D. R. Corey: Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol, 13(9), 787-92 (2006)
DOI: 10.1038/nsmb1140
PMid:16936728

224. V. Huang, J. Zheng, Z. Qi, J. Wang, R. F. Place, J. Yu, H. Li and L. C. Li: Ago1 Interacts with RNA polymerase II and binds to the promoters of actively transcribed genes in human cancer cells. PLoS Genet, 9(9), e1003821 (2013)
DOI: 10.1371/journal.pgen.1003821
PMid:24086155 PMCid:PMC3784563

225. L. C. Li, S. T. Okino, H. Zhao, D. Pookot, R. F. Place, S. Urakami, H. Enokida and R. Dahiya: Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A, 103(46), 17337-42 (2006)
DOI: 10.1073/pnas.0607015103
PMid:17085592 PMCid:PMC1859931

226. G. B. Robb, K. M. Brown, J. Khurana and T. M. Rana: Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol, 12(2), 133-7 (2005)
DOI: 10.1038/nsmb886
PMid:15643423

227. G. Meister: Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 14(7), 447-59 (2013)
DOI: 10.1038/nrg3462
PMid:23732335

228. P. Fasanaro, S. Greco, M. Lorenzi, M. Pescatori, M. Brioschi, R. Kulshreshtha, C. Banfi, A. Stubbs, G. A. Calin, M. Ivan, M. C. Capogrossi and F. Martelli: An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem, 284(50), 35134-43 (2009)
DOI: 10.1074/jbc.M109.052779
PMid:19826008 PMCid:PMC2787374

229. T. B. Hansen, E. D. Wiklund, J. B. Bramsen, S. B. Villadsen, A. L. Statham, S. J. Clark and J. Kjems: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J, 30(21), 4414-22 (2011)
DOI: 10.1038/emboj.2011.359
PMid:21964070 PMCid:PMC3230379

230. E. Leucci, F. Patella, J. Waage, K. Holmstrom, M. Lindow, B. Porse, S. Kauppinen and A. H. Lund: microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep, 3, 2535 (2013)
DOI: 10.1038/srep02535
PMid:23985560 PMCid:PMC3756333

231. K. Nishi, A. Nishi, T. Nagasawa and K. Ui-Tei: Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA, 19(1), 17-35 (2013)
DOI: 10.1261/rna.034769.112
PMid:23150874 PMCid:PMC3527724

232. L. Weinmann, J. Hock, T. Ivacevic, T. Ohrt, J. Mutze, P. Schwille, E. Kremmer, V. Benes, H. Urlaub and G. Meister: Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell, 136(3), 496-507 (2009)
DOI: 10.1016/j.cell.2008.12.023
PMid:19167051

233. R. Ye, W. Wang, T. Iki, C. Liu, Y. Wu, M. Ishikawa, X. Zhou and Y. Qi: Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell, 46(6), 859-70 (2012)
DOI: 10.1016/j.molcel.2012.04.013
PMid:22608924

234. D. Olivieri, M. M. Sykora, R. Sachidanandam, K. Mechtler and J. Brennecke: An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J, 29(19), 3301-17 (2010)
DOI: 10.1038/emboj.2010.212
PMid:20818334 PMCid:PMC2957214

235. M. Reuter, S. Chuma, T. Tanaka, T. Franz, A. Stark and R. S. Pillai: Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol, 16(6), 639-46 (2009)
DOI: 10.1038/nsmb.1615
PMid:19465913

236. J. Xiol, E. Cora, R. Koglgruber, S. Chuma, S. Subramanian, M. Hosokawa, M. Reuter, Z. Yang, P. Berninger, A. Palencia, V. Benes, J. Penninger, R. Sachidanandam and R. S. Pillai: A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Mol Cell, 47(6), 970-9 (2012)
DOI: 10.1016/j.molcel.2012.07.019
PMid:22902560

237. H. Su, M. I. Trombly, J. Chen and X. Wang: Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev, 23(3), 304-17 (2009)
DOI: 10.1101/gad.1749809
PMid:19174539 PMCid:PMC2648544

238. A. J. Modzelewski, R. J. Holmes, S. Hilz, A. Grimson and P. E. Cohen: AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell, 23(2), 251-64 (2012)
DOI: 10.1016/j.devcel.2012.07.003
PMid:22863743 PMCid:PMC3470808

239. M. Van Stry, T. H. Oguin, 3rd, S. Cheloufi, P. Vogel, M. Watanabe, M. R. Pillai, P. Dash, P. G. Thomas, G. J. Hannon and M. Bix: Enhanced susceptibility of Ago1/3 double-null mice to influenza A virus infection. J Virol, 86(8), 4151-7 (2012)
DOI: 10.1128/JVI.05303-11
PMid:22318144 PMCid:PMC3318639

240. C. Kuscu, P. Kumar, M. Kiran, Z. Su, A. Malik and A. Dutta: tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA, 24(8), 1093-1105 (2018)
DOI: 10.1261/rna.066126.118
PMid:29844106

241. M. Shigematsu and Y. Kirino: tRNA-Derived Short Non-coding RNA as Interacting Partners of Argonaute Proteins. Gene Regul Syst Bio, 9, 27-33 (2015)
DOI: 10.4137/GRSB.S29411
PMid:26401098 PMCid:PMC4567038

242. P. Kumar, J. Anaya, S. B. Mudunuri and A. Dutta: Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol, 12, 78 (2014)
DOI: 10.1186/PREACCEPT-5867533061403216
PMid:25270025 PMCid:PMC4203973

243. R. P. Ngondo, D. Cirera-Salinas, J. Yu, H. Wischnewski, M. Bodak, S. Vandormael-Pournin, A. Geiselmann, R. Wettstein, J. Luitz, M. Cohen-Tannoudji and C. Ciaudo: Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports, 10(2), 461-476 (2018)
DOI: 10.1016/j.stemcr.2017.12.023
PMid:29396181 PMCid:PMC5830960

244. R. Koesters, V. Adams, D. Betts, R. Moos, M. Schmid, A. Siermann, S. Hassam, S. Weitz, P. Lichter, P. U. Heitz, M. von Knebel Doeberitz and J. Briner: Human eukaryotic initiation factor EIF2C1 gene: cDNA sequence, genomic organization, localization to chromosomal bands 1p34-p35, and expression. Genomics, 61(2), 210-8 (1999)
DOI: 10.1006/geno.1999.5951
PMid:10534406

245. J. S. Dome and M. J. Coppes: Recent advances in Wilms tumor genetics. Curr Opin Pediatr, 14(1), 5-11 (2002)
DOI: 10.1097/00008480-200202000-00002
PMid:11880727

246. T. D. Treger, T. Chowdhury, K. Pritchard-Jones and S. Behjati: The genetic changes of Wilms tumour. Nat Rev Nephrol, 15(4), 240-251 (2019)
DOI: 10.1038/s41581-019-0112-0
PMid:30705419

247. G. T. Torrezan, E. N. Ferreira, A. M. Nakahata, B. D. Barros, M. T. Castro, B. R. Correa, A. C. Krepischi, E. H. Olivieri, I. W. Cunha, U. Tabori, P. E. Grundy, C. M. Costa, B. de Camargo, P. A. Galante and D. M. Carraro: Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun, 5, 4039 (2014)
DOI: 10.1038/ncomms5039
PMid:24909261 PMCid:PMC4062040

248. D. Rakheja, K. S. Chen, Y. Liu, A. A. Shukla, V. Schmid, T. C. Chang, S. Khokhar, J. E. Wickiser, N. J. Karandikar, J. S. Malter, J. T. Mendell and J. F. Amatruda: Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun, 2, 4802 (2014)
DOI: 10.1158/1538-7445.AM2014-LB-204

249. A. L. Walz, A. Ooms, S. Gadd, D. S. Gerhard, M. A. Smith, J. M. Guidry Auvil, D. Meerzaman, Q. R. Chen, C. H. Hsu, C. Yan, C. Nguyen, Y. Hu, R. Bowlby, D. Brooks, Y. Ma, A. J. Mungall, R. A. Moore, J. Schein, M. A. Marra, V. Huff, J. S. Dome, Y. Y. Chi, C. G. Mullighan, J. Ma, D. A. Wheeler, O. A. Hampton, N. Jafari, N. Ross, J. M. Gastier-Foster and E. J. Perlman: Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell, 27(2), 286-97 (2015)
DOI: 10.1016/j.ccell.2015.01.003
PMid:25670082 PMCid:PMC4800737

250. J. Wegert, N. Ishaque, R. Vardapour, C. Georg, Z. Gu, M. Bieg, B. Ziegler, S. Bausenwein, N. Nourkami, N. Ludwig, A. Keller, C. Grimm, S. Kneitz, R. D. Williams, T. Chagtai, K. Pritchard-Jones, P. van Sluis, R. Volckmann, J. Koster, R. Versteeg, T. Acha, M. J. O'Sullivan, P. K. Bode, F. Niggli, G. A. Tytgat, H. van Tinteren, M. M. van den Heuvel-Eibrink, E. Meese, C. Vokuhl, I. Leuschner, N. Graf, R. Eils, S. M. Pfister, M. Kool and M. Gessler: Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell, 27(2), 298-311 (2015)
DOI: 10.1016/j.ccell.2015.01.002
PMid:25670083

251. M. A. Carmell, Z. Xuan, M. Q. Zhang and G. J. Hannon: The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21), 2733-42 (2002)
DOI: 10.1101/gad.1026102
PMid:12414724

252. M. J. Tokita, P. M. Chow, G. Mirzaa, N. Dikow, B. Maas, B. Isidor, C. Le Caignec, L. S. Penney, G. Mazzotta, L. Bernardini, T. Filippi, A. Battaglia, E. Donti, D. Earl and P. Prontera: Five children with deletions of 1p34.3 encompassing AGO1 and AGO3. Eur J Hum Genet, 23(6), 761-5 (2015)
DOI: 10.1038/ejhg.2014.202
PMid:25271087 PMCid:PMC4795073

253. L. Li, C. Yu, H. Gao and Y. Li: Argonaute proteins: potential biomarkers for human colon cancer. BMC Cancer, 10, 38 (2010)
DOI: 10.1186/1471-2407-10-38
PMid:20146808 PMCid:PMC2843668

254. S. S. Chang, I. Smith, C. Glazer, P. Hennessey and J. A. Califano: EIF2C is overexpressed and amplified in head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec, 72(6), 337-43 (2010)
DOI: 10.1159/000320597
PMid:20924207 PMCid:PMC2975733

255. F. Q. Yang, J. H. Huang, M. Liu, F. P. Yang, W. Li, G. C. Wang, J. P. Che and J. H. Zheng: Argonaute 2 is up-regulated in tissues of urothelial carcinoma of bladder. Int J Clin Exp Pathol, 7(1), 340-7 (2014)

256. O. Vaksman, T. E. Hetland, C. G. Trope, R. Reich and B. Davidson: Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum Pathol, 43(11), 2062-9 (2012)
DOI: 10.1016/j.humpath.2012.02.016
PMid:22647351

257. J. Zhang, X. S. Fan, C. X. Wang, B. Liu, Q. Li and X. J. Zhou: Up-regulation of Ago2 expression in gastric carcinoma. Med Oncol, 30(3), 628 (2013)
DOI: 10.1007/s12032-013-0628-2
PMid:23775134

258. D. J. Papachristou, A. Korpetinou, E. Giannopoulou, A. G. Antonacopoulou, H. Papadaki, P. Grivas, C. D. Scopa and H. P. Kalofonos: Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch, 459(4), 431-40 (2011)
DOI: 10.1007/s00428-011-1119-5
PMid:21769619

259. B. Feng, P. Hu, S. J. Lu, J. B. Chen and R. L. Ge: Increased argonaute 2 expression in gliomas and its association with tumor progression and poor prognosis. Asian Pac J Cancer Prev, 15(9), 4079-83 (2014)
DOI: 10.7314/APJCP.2014.15.9.4079
PMid:24935600

260. J. Zhang, H. Jin, H. Liu, S. Lv, B. Wang, R. Wang, H. Liu, M. Ding, Y. Yang, L. Li, J. Zhang, S. Fu, D. Xie, M. Wu, W. Zhou and Q. Qian: MiRNA-99a directly regulates AGO2 through translational repression in hepatocellular carcinoma. Oncogenesis, 3, e97 (2014)
DOI: 10.1038/oncsis.2014.11
PMid:24732044 PMCid:PMC4007193

261. J. Shen, W. Xia, Y. B. Khotskaya, L. Huo, K. Nakanishi, S. O. Lim, Y. Du, Y. Wang, W. C. Chang, C. H. Chen, J. L. Hsu, Y. Wu, Y. C. Lam, B. P. James, X. Liu, C. G. Liu, D. J. Patel and M. C. Hung: EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature, 497(7449), 383-7 (2013)
DOI: 10.1038/nature12080
PMid:23636329 PMCid:PMC3717558

262. S. R. Horman, M. M. Janas, C. Litterst, B. Wang, I. J. MacRae, M. J. Sever, D. V. Morrissey, P. Graves, B. Luo, S. Umesalma, H. H. Qi, L. J. Miraglia, C. D. Novina and A. P. Orth: Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol Cell, 50(3), 356-67 (2013)
DOI: 10.1016/j.molcel.2013.03.015
PMid:23603119 PMCid:PMC3654076

263. D. A. Altomare and J. R. Testa: Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24(50), 7455-64 (2005)
DOI: 10.1038/sj.onc.1209085
PMid:16288292

264. R. J. Golden, B. Chen, T. Li, J. Braun, H. Manjunath, X. Chen, J. Wu, V. Schmid, T. C. Chang, F. Kopp, A. Ramirez-Martinez, V. S. Tagliabracci, Z. J. Chen, Y. Xie and J. T. Mendell: An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature, 542(7640), 197-202 (2017)
DOI: 10.1038/nature21025
PMid:28114302 PMCid:PMC5302127

265. S. Rudel, Y. Wang, R. Lenobel, R. Korner, H. H. Hsiao, H. Urlaub, D. Patel and G. Meister: Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res, 39(6), 2330-43 (2011)
DOI: 10.1093/nar/gkq1032
PMid:21071408 PMCid:PMC3064767

266. H. H. Qi, P. P. Ongusaha, J. Myllyharju, D. Cheng, O. Pakkanen, Y. Shi, S. W. Lee, J. Peng and Y. Shi: Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature, 455(7211), 421-4 (2008)
DOI: 10.1038/nature07186
PMid:18690212 PMCid:PMC2661850

267. A. Leung, T. Todorova, Y. Ando and P. Chang: Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm. RNA Biol, 9(5), 542-8 (2012)
DOI: 10.4161/rna.19899
PMid:22531498 PMCid:PMC3495734

268. P. C. Shekar, A. Naim, D. P. Sarathi and S. Kumar: Argonaute-2-null embryonic stem cells are retarded in self-renewal and differentiation. J Biosci, 36(4), 649-57 (2011)
DOI: 10.1007/s12038-011-9094-1
PMid:21857111

269. S. Morita, T. Horii, M. Kimura, Y. Goto, T. Ochiya and I. Hatada: One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics, 89(6), 687-96 (2007)
DOI: 10.1016/j.ygeno.2007.01.004
PMid:17418524

270. R. S. Alisch, P. Jin, M. Epstein, T. Caspary and S. T. Warren: Argonaute2 is essential for mammalian gastrulation and proper mesoderm formation. PLoS Genet, 3(12), e227 (2007)
DOI: 10.1371/journal.pgen.0030227
PMid:18166081 PMCid:PMC2323323

Key Words: microRNAs, endo-siRNAs, Argonaute, mammals, In Vivo, Review

Send correspondence to: Joana A. Vidigal, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA, Tel: 240-760-6691, E-mail: joana.vidigal@nih.gov