[Frontiers in Bioscience 2, d207-221, May 1, 1997]
Reprints
PubMed
CAVEAT LECTOR



Table of Conents
 Previous Section   Next Section

RECENT ADVANCES IN LYMPHOCYTE SIGNALING AND REGULATION

Chun Kung and Matthew L. Thomas

Department of Pathology, HHMI, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110

Received 4/4/97; Accepted 4/24/97; On-line 5/1/97

6. REFERENCES

1. L. M. L. Chow & A. Veillette: The Src and Csk families of tyrosine protein kinases in hemopoietic cells. Semin Immunol 7, 207-226 (1995)

2. G. Zenner, J. D. zur Hansen, P. Burn & T. Mustelin: Towards unraveling the complexity of T cell signal transduction. BioEssays 17, 967-975 (1995)

3. M. Szamel & K. Resch: T-cell antigen receptor-induced signal-transduction pathways - activation and function of protein kinases C in T lymphocytes. Eur J Biochem 228, 1-15 (1995)

4. L. B. Justement, V. K. Brown & J. Lin: Regulation of B cell activation by CD45: a question of mechanism. Immunol Today 15, 399-406 (1994)

5. A. Weiss & D. R. Littman: Signal transduction by lymphocyte antigen receptors. Cell 76, 263-274 (1994)

6. A. C. Chan & A. S. Shaw: Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr Opin Immunol 8, 394-401 (1995)

7. R. L. Wange, R. Guitan, N. Isakov, J. D. Watts, R. Aebersold & L. E. Samelson: Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70. J Biol Chem 270, 18730-18733 (1995)

8. A. C. Chan, M. Dalton, R. Johnson, G. H. Kong, T. Wang, R. Thoma & T. Kunoshi: Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J 14, 2499-2508 (1995)

9. D. Mege, V. Di Bartolo, V. Germain, L. Tuosto, F. Michel & O. Acuto: Mutation of tyrosines 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways. J Biol Chem 271, 32644-32652 (1996)

10. E. Cano & L. C. Mahadevan: Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20, 117-122 (1995)

11. C. J. Marshall: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179-185 (1995)

12. K. S. Ravichandran, K. K. Lee, Z. Songyang, L. C. Cantley, P. Burn & S. J. Burakoff: Interaction of Shc with the zeta chain of the T cell receptor upon T cell activation. Science 262, 902-905 (1993)

13. M. Deckert, S. Tartare-Deckert, C. Couture, T. Mustelin & A. Altman: Functional and physical interactions of Syk kinases with the Vav proto-oncogene product. Immunity 5, 591-604 (1996)

14. P. Crespo, K. E. Schuebel, A. A. Ostrom, J. S. Gutkind & X. R. Bustelo: Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169-172 (1997)

15. P. Crespo, X. R. Bustelo, D. S. Aaronson, O. A. Coso, M. Lopez-Barahona, M. Barbacid & J. S. Gutkind: Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene 13, 455-460 (1996)

16. R. G. Qiu, J. Chen, D. Kim, F. McCormick & M. Symons: An essential role for Rac in Ras transformation. Nature 374, 457-459 (1995)

17. R. G. Qiu, J. Chen, F. McCormick & F. Symons: A role for Rho in Ras transformation. Proc Natl Acad Sci USA 92, 11781-11785 (1995)

18. J. Wu, S. Katzov & A. Weiss: A functional T-cell receptor signaling pathway is required for p95vav activity. Mol Cell Biol 15, 4337-4346 (1995)

19. E. Genot, S. Cleverley, S. Henning & D. Cantrell: Multiple p21ras effector pathways regulate nuclear factor of activated T cells. EMBO J 15, 3923-3933 (1996)

20. K. Nagai, M. Takata, H. Yamamura & T. Kurosaki: Tyrosine phosphorylation of Shc is mediated through Lyn and Syk in B cell receptor signaling. J Biol Chem 270, 6824-6829 (1995)

21. J. B. Wardenburg, C. Fu, J. K. Jackman, H. Flotow, S.E. Wilkinson, D.H. Williams, R. Johnson, G. Kong, A.C. Chan & P.R. Findell: Phosphorylation of SLP-76 by the ZAP-70 protein tyrosine kinase is required for T-cell receptor function. J Biol Chem 271, 19641-19644 (1996)

22. Y-C. Liu, C. Elly, W. Y. Langdon & A. Altman: Ras-dependent, Ca2+-stimulated activation of nuclear factor of activated T cells by a constitutively active Cbl mutant in T cells. J Biol Chem 272, 168-173 (1997)

23. A. Y. Tsygankov, M. Mahajan, J. E. Fincke & J. B. Bolen: Specific association of tyrosine-phosphorylated c-Cbl with Fyn tyrosine kinase in T cells. J Biol Chem 271, 27130-27137 (1996)

24. S. M. Anderson, E. A. Burton & B. L. Koch: Phosphorylation of Cbl following stimulation with interleukin-3 and its association with Grb-2, Fyn and phosphatidylinositol 3-kinase. J Biol Chem 272, 739-745 (1997)

25. T. Tezuka, H. Umemori, N. Fusaki, T. Yagi, M. Takata, T. Kurosaki & T. Yamamoto: Physical and functional association of the cbl protooncogene product with an src-family protein tyrosine kinase, p53/56lyn, in the B cell antigen receptor-mediated signaling. J Exp Med 183, 675-80 (1996)

26. R. J. Ingham, D. L. Kreb, S. M. Barbazuk, C. W. Turck, H. Hirai, M. Matsuda & M. R. Gold: B cell antigen receptor signaling induces the formation of complexes containing the Crk adapter proteins. J Cell Biol 271, 32306-32314 (1996)

27. M. Takata, H. Sabe, A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura & T. Kurosaki: Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J 13, 1341-1349 (1994)

28. M. Takata & T. Kurosaki: A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med 184, 31-40 (1996)

29. A. L. Sillman & J. G. Monroe: Association of p72syk with the src homology-2 (SH2) domains of PLC gamma 1 in B lymphocytes. J Biol Chem 270, 11806-11811 (1995)

30. H. Yamaguichi & W. A. Hendrickson: Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484-489 (1996)

31. F. Sicheri, I. Moarefi & J. Kuriyan: Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602-609 (1997)

32. W. Xu, S. C. Harrison & M. J. Eck: Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595-602 (1997)

33. J-F. Cloutier, L. M. Chow & A. Veilette: Requirement of the SH3 and SH2 domains for the inhibitory function of tyrosine protein kinase p50csk in T lymphocytes. Mol Cell Biol 15, 5937-5944 (1995)

34. L. M. Chow, C. Jarvis, Q. Hu, S. H. Nye, F. G. Gervais, A. Veilette & L. A. Matis: Ntk: a Csk-related protein-tyrosine kinase expressed in brain and T-lymphocytes. Proc Natl Acad Sci USA 91, 4975-4979 (1994)

35. A. Imamoto & P. Soriano: Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73, 1117-1124 (1993)

36. S. Nada, T. Yagi, H. Takeda, T. Tokunaga, H. Nakagawa, Y. Ikawa, M. Okada & S. Aizawa: Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 73, 1125-1135 (1993)

37. M. Autero, J. Saharinen, T. Pessa-Morikawa, M. Soula-Rothhut, C. Oetken, M. Gassmann, M. Bergman, K. Alitalo, P. Burn, C.G. Gahmberg & T. Mustelin: Tyrosine phosphorylation of CD45 phosphotyrosine phosphatase by p50csk kinase creates a binding site for p56csk tyrosine kinase and activates the phosphatase. Mol Cell Biol 14, 1308-1321 (1994)

38. U. D'oro, K. Sakaguichi, E. Apella & J. D. Ashwell: Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol Cell Biol 16, 4996-5003 (1996)

39. W. Rodgers & J. K. Rose: Exclusion of CD45 inhibits activity of p56csk associated with glycolipid-enriched membrane domains. J Cell Biol 135, 1515-1523 (1996)

40. D. R. Plas, R. Johnson, J. T. Pingel, R. J. Matthews, M. Dalton, G. Roy, A. C. Chan & M. L. Thomas: Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 272, 1173-1176 (1996)

41. U. Lorenz, K. S. Ravichandran, S. J. Burakoff & B. G. Neel: Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyper-responsiveness. Proc Natl Acad Sci USA 93, 9624-9629 (1996)

42. G. Doody, L. Justement, C. Delibrais, R. Matthews, J. Lin, M. Thomas & D. Fearon: A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242-244 (1995)

43. D. D'Ambrosio, K. L. Hippen, S. A. Minskoff, I. Mellman, G. Pani, K. A. Siminovitch & J. C. Cambier: Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by FcgammaRIIB1. Science 268, 293-296 (1995)

44. L. A. Conroy & D. R. Alexander: The role of intracellular signaling pathways regulating thymocyte development and leukemic T cell apoptosis. Leukemia 10, 1422-1435 (1996)

45. F. Melchers, A. Rolink, U. Grawunder, T. H. Winkler, H. Karasuyama, P. Ghia & J. Andersson: Positive and negative selection events during B lymphopoiesis. Curr Opin Immunol 7, 214-227 (1995)

46. T. J. Molina, K. Kishihara, D. P. Siderovski, W. van Ewijk, A. Narendran, E. Timms, A. Wakeham, C. J. Paige, K. U. Hartmann, A. Veillette, D. Davidson & T. W. Mak : Profound block in thymocyte development in mice lacking p56csk. Nature 357, 161-164 (1992)

47. M. W. Appleby, J. A. Gross, M. P. Cooke, S. D. Levin, X. Qian & R. M. Perlmutter: Defective T cell receptor signaling in mice lacking the thymic isoform of p59csk. Cell 70, 751-763 (1992)

48. P. L. Stein, H-M. Lee, S. Rich & P. Soriano: pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741-750 (1992)

49. T. Groves, P. Smiley, M. P. Cooke, K. Forbush, R. M. Perlmutter & C. J. Guidos: Fyn can partially substitute for Lck in T lymphocyte development. Immunity 5, 417-428 (1996)

50. N. S. C. van Oers, B. Lowin-Kropf, D. Finlay, K. Connolly & A. Weiss: alphabeta T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity 5, 429-436 (1996)

51. P. Mombaerts, S. J. Anderson, R. M. Perlmutter, T. W. Mak & S. Tonegawa: An activated lck transgene promotes thymocyte development in RAG-1 mutant mice. Immunity 1, 261-267 (1994)

52. M. P. Cooke, K. M. Abraham, K. A. Forbush & R. M. Perlmutter: Regulation of T cell receptor signaling by a src family protein-tyrosine kinase (p59csk). Cell 65, 281-291 (1991)

53. S. J. Anderson, S. D. Levin & R. M. Perlmutter: Protein tyrosine kinase p56csk controls allelic exclusion of T cell receptor beta chain genes. Nature 365, 552-554 (1993)

54. S. Levin, S. Anderson, K. Forbush & R. Perlmutter: A dominant-negative transgene defines a role for p56csk in thymopoiesis. EMBO J 12, 1671-1680 (1993)

55. K. Hashimoto, S. J. Soln, S. D. Levin, T. Tada, R. M. Perlmutter & T. Nakayama: Requirement for p56csk tyrosine kinase activation in T cell receptor-mediated thymic selection. J Exp Med 184, 931-943 (1996)

56. A. K. Tarakhovsky, S. B. Kanner, J. Hombach, J. A. Ledbetter, W. Muller, N. Killeen & K. Rajewsky: A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269, 535-537 (1995)

57. G. Bikah, J. Carey, J. R. Ciallella, A. Tarakhovsky & S. Bondada: CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274, 1906-1909 (1996)

58. D. L. Wiest, J. M. Ashe, R. Abe, J. B. Bolen & A. Singer: TCR activation of ZAP-70 is impaired in CD4+ CD8+ thymocytes as a consequence of intrathymic interactions that diminish available p56csk. Immunity 4, 495-504 (1996)

59. M. L. Hibbs, D. M. Tarlinton, J. Armes, D. Grail, G. Hodgson, R. Maglitto, S. A. Stacker & A. R. Dunn: Multiple defects in the immune system of lyn-deficient mice, culminating in autoimmune disease. Cell 83, 301-311 (1995)

60. A. C. Chan, T. A. Kadlecek, M. E. Elder, A. H. Filipovich, W. L. Kuo, M. Iwashima, T. G. Parslow & A. Weiss: ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264, 1599-1601 (1994)

61. M. E. Elder, D. Lin, J. Clever, A. C. Chan, T. J. Hope, A. Weiss & T. G. Parslow: Human severe combined immnuodeficiencies are due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264, 1596-1599 (1994)

62. E. Arpaia, M. Shahar, H. Dadi, A. Cohen & C. M. Roifman: Defective T cell receptor signaling and CD8+ thymic selection in humans lacking ZAP-70 kinase. Cell 76, 947-958 (1994)

63. I. Negishi, N. Motoyama, K. Nakayawa, K. Nakayama, S. Senju, S. Hatakeyama,Q. Zhang, A. C. Chan & D. Y. Loh: Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435-438 (1995)

64. M. Turner, P. J. Mee, P. S. Costello, O. Williams, A. A. Price, L. P. Duddy, M. T. Furlong, R. L. Geahlen & V. L. Tybulewicz: Perinatal lethality and blocked T cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298-302 (1995)

65. A. M. Cheng, B. Rowley, W. Pao, A. Hayday, J. B. Bolen & T. Pawson: Syk tyrosine kinase required for mouse viability and B cell development. Nature 378, 303-306 (1995)

66. M. Takata, H. Sabe, H. Hata, T. Inazu, Y. Homma, T. Nukada, H.Yamamura & T. Kurosaki: Tyrosine kinase Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J 13, 1341-1349 (1994)

67. C. A. Mallick-Wood, W. Pao, A. M. Cheng, J. M. Lewis, S. Kulkarni, J. B. Bolen, B. Rowley, R. E. Tigelaar , T. Pawson & A. C. Hayday: Disruption of epithelial gammadelta T cell repertoires by mutations of the Syk tyrosine kinase. Proc Natl Acad Sci USA 93, 9704-9709 (1996)

68. A. C. Chan, N. S. C. van Oers, A. Tran, L. Turka, C. L. Law, J. C. Ryan, E. A. Clark & A. Weiss: Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J Immunol 152, 4758-4766 (1994)

69. G. H. Kong, J. Y. Bu, T. Kurosaki, A. S. Shaw & A. C. Chan: Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity 2, 485-492 (1995)

70. G. Roy, J. Matthews, T. Woodford-Thomas & M. L. Thomas: The function of protein tyrosine phosphatases in immune regulation. Adv Prot Phosphatases 9, 121-138 (1995)

71. M. Okumura & M. L. Thomas: Regulation of immune function by protein tyrosine phosphatases. Curr Opin Immunol 7, 312-319 (1995)

72. M. L. Thomas: Positive and negative regulation of leukocyte activation by protein tyrosine phosphatases. Semin Immunol 7, 279-288 (1995)

73. J. A. R. Frearson & D Alexander: Protein tyrosine phosphatases in T-cell development, apoptosis and signaling. Immunol Today 17, 385-391 (1996)

74. C. M. Burns, K. Sakaguichi, E. Appella & J. D. Ashwell: CD45 regulation of tyrosine phosphorylation and enzyme activity of of the src family kinase. J Biol Chem 269, 13594-13600 (1994)

75. T. R. Hurley, R. Hyman & B. M. Sefton: Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphatase of the Lck, Fyn, c-Src tyrosine kinases. Mol Cell Biol 18,1651-1656 (1993)

76. E. D. McFarland, T. R. Hurley, J. Pingel, J. T. Sefton, A. Shaw & M. L. Thomas: Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc Natl Acad Sci USA 90, 1402-1406 (1993)

77. M. Sieh, J. B. Bolen & A. Weiss: CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J 12, 315-322 (1993)

78. F. G. Gervais & A. Veillette: The unique amino-terminal domain of p56csk regulates interactions with protein tyrosine phosphatases inT-lymphocytes. Mol Cell Biol 15, 2393-2401 (1995)

79. S. Yanagi, H. Sugawara, M. Kurosaki, H. Sabe, H. Yamamura & T. Kurosaki: CD45 modulates phosphorylation of both autophosphorylation and negative regulatory tyrosines of Lyn in B cells. J Biol Chem 271, 30487-30492 (1996)

80. A. Hata, H. Sabe, T. Kurosaki, M. Takata, & H. Hanafusa: Functional analysis of Csk in signal transduction through the B-cell antigen receptor. Mol Cell Biol 14, 7306-7313 (1994)

81. S. Volarevic, B. B. Niklinska, C. M. Burns, C H. June, A. M. Weisman & J. D. Ashwell: Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science 260, 541-543 (1993)

82. R. R. Hovis, J. A. Donovan, M. A. Musci, D. G. Motto, F. D. Goldman, S. E. Ross & G. A. Koretzky: Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 260, 544-546 (1993)

83. D. Chu, C. J. Ong, P. Johnson, H-S. Teh & J. D. Marth: Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J 13, 798-807 (1994)

84. T. J. Novak, D. Farber, D. Leitenburg, S-C. Hong, P. Johnson & K. Bottomly: Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity 1, 109-119 (1994)

85. D. W. Mckenney, H. Onodera, L. Gorman, T. Mimura & D. M. Rothstein: Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J Biol Chem 270, 24949-24954 (1995)

86. H. Onodera, D. G. Motto, G. A. Koretzky & D. M. Rothstein: Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J Biol Chem 271, 22225-22230 (1996)

87. L. I. Pao, W. D. Bedzyk, C. Persin & J. C. Cambier: Molecular targets of CD45 in B cell antigen receptor signal transduction. J Immunol 158, 1116-1124 (1997)

88. A. D. Beyers, L. L. Spruyt & A. F. Williams: Molecular associations between the T-lymphocyte antigen receptor complex and the surface antigens CD2, CD4 or CD8 and CD5. Proc Natl Acad Sci USA 89, 2945-2949 (1992)

89. F. D. Howard, P. Moingeon, U. Moebius, D. J. McConkey, B. Yandava, T. E. Gennert & E. L. Reinherz: The CD3 zeta cytoplasmic domain mediates CD2-induced T cell activation. J Exp Med 176, 139-145 (1992)

90. P. Moingeon, J. L. Lucich, D. J. McConkey, F. Letourneur, B. Malissen, J. Kochan, H. C. Chang, H. R. Rodewald & E. L. Reinherz: CD3 zeta dependence of the CD2 pathway of activation in T lymphocytes and natural killer cells. Proc Natl Acad Sci USA 89, 1492-1496 (1992)

91. A. M. Caruso, D. W. Mason & A. D. Beyers: Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn. Eur J Immunol 23, 2196-2201 (1993)

92. M. Gassmann, K. E. Amrein, N. A. Flint, B. Schraven & P. Burn: Identification of a signaling complex involving CD2, zeta chain and p59fyn in T lymphocytes. Eur J Immunol 24, 139-144 (1994)

93. A. M. Verhagen, B. Schraven, M. Wild, R. Wallich & S. C. Meuer: Differential interaction of the CD2 extracellular and intracellular domains with the tyrosine phosphatase CD45 and the zeta chain of the TCR/CD3/zeta complex. Eur J Immunol 26, 2841-2849 (1996)

94. D. Leitenburg, T. J. Novak, D. Farber, B. R. Smith & K. Bottomly: The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J Exp Med 183, 249-259 (1996)

95. T. Benatar, R. Carsetti, C. Furlonger, N. Kamalia, T. Mak & C. J. Paige: Immunoglobin-mediated signal transduction in B cells from CD45-deficient mice. J Exp Med 183, 329-334 (1996)

96. K. Kishihara, J. Penninger, V. A. Wallace et al.: Normal B lymphocyte development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase-deficient mice. Cell 74, 143-156 (1993)

97. J. G. Cyster, J. I. Healy, K. Kishihara, T. W. Mak, M. L. Thomas & C. C. Goodnow: Regulation of B-lymphocyte negative and positive selection by tyrosine phosphophatase CD45. Nature 381, 325-328 (1996)

98. K. F. Byth, L. A. Conroy, S. Howlett, A. J. H. Smith, J. May, D. R. Alexander & N. Holmes: CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+ CD8+ thymocytes and in B cell maturation. J Exp Med 183, 1707-1718 (1996)

99. J. Kirburg & T. Brocker: CD45 up-regulation during lymphocyte maturation. Intl Immunol 8, 1743-1749 (1996)

100. A. Takeda, J. J. Wu & A. L. Maizel: Evidence for a monomeric and dimeric forms of CD45 associated with a 30kDa phosphorylated protein. J Biol Chem 16651-16639 (1993)

101. A. M. Bilwes, J. den Hertog, T. Hunter & J. P. Noel: Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 382, 555-559 (1995)

102. M. L. Dustin & T. A. Springer: T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619-624 (1989)

103. F. Spertini, A. V. Wang, T. Chatila & R. S. Geha: Engagement of the common leukocyte antigen CD45 induces homotypic adhesion of activated human T cells. J Immunol 153, 1593-1602 (1994)

104. J. M. Zapata, M. R. Campanero, M. Marazeula, F. Sanchez-Madrid & M. O. de Landazuri: B-cell homotypic adhesion through exon A restricted epitopes of CD45 involves LFA-1/ICAM-1, ICAM-3 interactions, and induces coclustering of CD45 and LFA-1. Blood 86, 1861-1872 (1995)

105. A. G. Arroyo, M. R. Campanero, P. Sanchez-Mateos, J. M. Zapata, M. A. Ursa, M. A. del Pozo & F. Sanchez-Madrid: Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase. J Cell Biol 126, 1277-1286 (1994)

106. C. Herold, A. Elhabazi, G. Bismuth, A. Bensussan & L. Boumsell: CD100 is associated with CD45 at the surface of human T lymphocytes- role in T cell homotypic adhesion. J Immunol 157, 5262-5268 (1996)

107. E. D. Cahir McFarland, & M. L. Thomas: CD45 protein-tyrosine phosphatase associates with the WW domain-containing protein, CD45AP, through the transmembrane region. J Biol Chem 270, 28103-28107 (1995)

108. E. Bruyns, L. R. Hendrickson-Taylor, S. Meuer, G. A. Koretzky & B. Schraven: Identification of the sites of interaction between LPAP and CD45. J Biol Chem 270, 3132-31378 (1995)

109. K. A. Kitamura, A. Maita, D. H. W. Ng, P. Johnson, A. L. Maizel & A. Takeda: Characterization of interactions between CD45 and CD45AP. J Biol Chem 270, 21151-21154 (1995)

110. D. M. Desai, J. Sap, I. Schlessinger & A. Weiss: Ligand mediated negative regulation of a chimeric transmembrane receptor tyrosine phospatase. Cell 73, 541-554 (1994)

111. B. Schraven, D. Schoenhaut, E. Bruyns, G. Koretzky, C. Eckerskorn, R. Wallich, H. Kirchgessner, P. Sakorafas, B. Labkovsky, S. Ratnofsky & S. Meuer: LPAP, a novel 32-kDa phosphoprotein that interacts with CD45 in human lymphocytes. J Biol Chem 269, 29102-29111 (1994)

112. D. C. Chan, M. T. Bedford & P. Leder: Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J 15, 1045-1054 (1996)