[Frontiers in Bioscience 1, d214-233, September 1, 1996]


Martin Davies1, Alan N. Bateson1,2 and Susan M. J. Dunn1,2

1 Department of Pharmacology

2Division of Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Received 07/16/96; Accepted 07/22/96; On-line 09/01/96


1. Barnard, E.A.: Receptor classes and the transmitter-gated ion channels. TIBS 17, 368-374 (1992).

2. Gallagher J.P., H. Higashi and S. Nishi: Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol 275, 263-82 (1978).

3. Cherubini, E., J.L. Gaiarsa and Y. Ben-Ari: GABA: an excitatory transmitter in early postnatal life. Trends Neurosc 14, 515-9 (1991).

4. Bowery N.G., D.R. Hill, A.L. Hudson, A. Doble, D.N. Middlemiss, J. Shaw and M. Turnbull: (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92-4 (1980).

5. Krogsgaard-Larsen P., H. Hjeds, D.R. Curtis, D. Lodge and G.A.R. Johnston: Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J Neurochem 32, 1717-24 (1979).

6. Dunn, S.M.J., A.N. Bateson and I.L. Martin: Molecular neurobiology of the GABAAA receptor. International Review of Neurobiology 36, 51-96 eds. R.J. Bradley and R.A. Harris Academic Press (1995).

7. Study, R.E. and J.L. Barker: Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminbutyric acid responses in cultured central neurons. Proc Natl Acad Sci USA 78, 7180-7184 (1981).

8. Doble, A. and I.L. Martin: Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol Sci 13, 76-81 (1992).

9. Duncalfe, L.L. and S.M.J. Dunn: Mapping of GABAA receptor sites that are photoaffinity-labelled by [3H]flunitrazepam and [3H]Ro15-4513. Eur J Pharmacol 298, 313-319 (1996).

10. Squires, R.F., D.I. Benson, C. Braestrup, J. Coupet, C.A. Klepner, V. Myers and B. Beer: Some properties of brain specific benzodiazepine receptors: new evidence for multiple receptors. Pharmacol Biochem Behav 10, 825-30 (1979).

11. Sigel, E. and E.A. Barnard: A gamma-aminobutyric acid/benzodiazepine receptor complex from bovine cerebral cortex. Improved purification with preservation of regulatory sites and their interactions. J Biol Chem 259, 7219-7223 (1984).

12. Casalotti, S.O., F.A. Stephenson and E.A. Barnard: Separate subunits for agonist and benzodiazepine binding in the gamma-aminobutyric acid A receptor oligomer. J Biol Chem 261, 15013-15016 (1986).

13. Deng, L., R.W. Ransom and R.W. Olsen: [3H]muscimol photolabels the gamma-aminobutyric acid receptor binding site on a peptide subunit distinct from that labeled with benzodiazepines. Biochem Biophys Res Commun 138, 1308-1314 (1986).

14. Schofield, P.R., M.G. Darlison, N. Fujita, D.R. Burt, F.A. Stephenson, H. Rodriguez, L.M. Lee, J. Ramachandran, V. Reale, T.A. Glencorse, P.H. Seeburg and E.A. Barnard: Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature (London) 328, 221-227 (1987).

15. Grenningloh, G., A. Rientiz, B. Schmitt, C. Methfessel, M. Zensen, K. Beyreuther, E. Gundelfinger and H. Betz: The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215-220 (1987).

16. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, Y. Furutani, T. Hirose, H. Takashima, S. Inayama, T. Miyata and S. Numa: Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528-532 (1983).

17. Maricq, A., A. Peterson, A. Brake, R. Myers and D. Julius: Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432-436 (1991).

18. Stroud, R.M., M.P. McCarthy and M. Shuster: Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistry 29, 11009-11023 (1990).

19. Unwin, N.: Nicotinic acetylcholine receptor at 9Å resolution. J Mol Biol 229, 1101-1124 (1993).

20. Nayeem, N., T. Green, I. Martin and E. Barnard: Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem 62, 815-818 (1994).

21. Leidenheimer, N.J., M.D. Browning and R.A. Harris: GABAA receptor phosphorylation: multiple sites, actions and artifacts. Trends Pharmacol Sci 12, 84-87 (1991).

22. Glencorse T.A., A.N. Bateson and M.G. Darlison: Differential localization of two alternatively spliced GABA(A) receptor 2-subunit mRNAs in the chick brain. Eur J Neurosci 4, 271-277 (1992).

23. Kofuji P., J.B. Wang, S.J. Moss, R.L. Huganir and D.R. Burt: Generation of two forms of the gamma-aminobutyric acid(A) receptor gamma2-subunit in mice by alternative splicing. J Neurochem 56, 713-715 (1991).

24. Whiting, P., R.M. McKernan and L.L. Iversen: Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma2 subunit, one of which contains a protein kinase C phosphorylation site. Proc Nat Acad Sci 87, 9966-9970 (1990).

25. McKinley D.D., D.J. Lennon and D.B. Carter: Cloning, sequence analysis and expression of two forms of mRNA coding for the human ß2 subunit of the GABA(A) receptor. Mol Brain Res 28, 175-179 (1995).

26. Harvey R.J., M.A. Chinchetru and M.G. Darlison: Alternative splicing of a 51-nucleotide exon that encodes a putative protein kinase C phosphorylation site generates two forms of the chicken gamma-aminobutyric acid(A) receptor ß2 subunit. J Neurochem 62, 10-16 (1994)

27. Kamatchi, G.L., P. Kofuji, J.B. Wang, J.C. Fernando, Z. Liu, J.R. Mathura Jr. and D.R. Burt: GABAA receptor ß1, ß2, and ß3 subunits: comparisons in DBA/2J and C57BL/6J mice. Biochim Biophys Acta 1261, 134-42 (1995).

28. Cutting G.R., L. Lu L, B.F. O'Hara, L.M. Kasch, C. Montrose-Rafizadeh, D.M. Donovan, S. Shimada, S.E. Antonarakis, W.B. Guggino, G.R. Uhl and H.H. Kazazian: Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc Natl Acad Sci 88, 2673-7 (1991).

29. Wang, T.-L., W.B. Guggino and G.R. Cutting: A novel gamma-aminobutyric acid receptor subunit (rho 2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. J Neurosci 14, 6524-31 (1994).

30. Shimada S., G. Cutting and G.R. Uhl: gamma-aminobutyric acid A or C receptor? gamma-aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes. Mol Pharmacol 41, 683-7 (1992).

31. Enz R., J.H. Brandstatter, E. Hartveit, H. Wassle and J. Bormann: Expression of GABA receptor rho 1 and rho 2 subunits in the retina and brain of the rat. Euro. J Neurosci 7, 1495-501 (1995).

32. Zhang, D., Z.H. Pan, X. Zhang, A.D. Brideau and S.A. Lipton: Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proc Nat Acad Sci 92, 11756-60 (1995).

33. Pritchett, D.B., H. Sontheimer, B.D. Shivers, S. Ymer, H. Kettenmann, P.R. Schofield and P.H. Seeburg: Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582-585 (1989).

34. Macdonald, R.L. and R.W. Olsen: GABAA receptor channels. Ann Rev Neurosci 17, 569-602 (1994).

35. Backus K.H., M. Arigoni, U. Drescher, L. Scheurer, P. Malherbe, H. Möhler and J. A. Benson: Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport 5, 285-8 (1993).

36. Im, W.B., J.F. Pregenzer, J.A. Binder, G.H. Dillon and G.L. Alberts: Chloride channel expression with the tandem construct of alpha6- ß2 GABAA receptor subunit requires a monomeric subunit of alpha6 or gamma2. J Biol Chem 270, 26063-6 (1995).

37. Pollard S., C.L. Thompson and F.A. Stephenson: Quantitative characterization of alpha6 and alpha1 alpha6 subunit-containing native gamma-aminobutyric acidA receptors of adult rat cerebellum demonstrates two alpha subunits per receptor oligomer. J Biol Chem 270, 21285-90 (1995).

38. Langosch, D., A. Herbold, V. Schmieden, J. Borman and J. Kirsch: Importance of Arg-219 for correct biogenesis of alpha1 homooligomeric glycine receptors. FEBS Lett 336 (3), 540-544 (1993).

39. Green, W. and N. Millar: Ion-channel assembly. Trends Neurosci 18, 280-287 (1995).

40. Karlin, A. and M.H. Akabas: Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231-1244 (1995).

41. Changeux, J.-P.: The acetylcholine receptor: a model for allosteric membrane proteins. Biochem Soc Trans 23, 195-205 (1995).

42. Blount, P. and J.P. Merlie: Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3, 349-357 (1989).

43. Pederson, S.E. and J.B. Cohen: d-Tubocurarine binding sites are located at alpha-gamma and alpha-delta subunit interfaces in the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 87, 2785-2789 (1990).

44. Sine, S.M. and T. Claudio: gamma- and delta-subunits regulate the affinity and cooperativity of ligand binding to the acetylcholine receptor. J Biol Chem 266, 19369-19377 (1991).

45. Sine, S.: Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc Natl Acad Sci USA 90, 9436-9440 (1993).

46. Sine, S., H. Kreienkamp, N. Bren, R. Maeda and P. Taylor: Molecular dissection of subunits interfaces in the acetylcholine receptor: identification of determinants of alpha-conotoxin M1 Selectivity. Neuron 15, 205-211 (1995).

47. Johnson, L.N.: Allosteric proteins. In: Receptor Subunits and Complexes. (Burgen, A.S.V. and Barnard, E.A., eds), Cambridge University Press. pp 39-95 (1992).

48. Blair, L.A.C., E.S. Levitan, J. Marshall, V.E. Dionne and E.A. Barnard: Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science 242, 577-579 (1988).

49. Shivers, B.D., I. Killisch, R. Sprengel, H. Sontheimer, M. Kohler, P.R. Schofield and P.H. Seeburg: Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3, 327-337 (1989).

50. Amin, J. and D. Weiss: GABAA receptor needs two homologous domains of the ß-subunit for activation by GABA but not by pentobarbital. Nature 366, 565-511 (1993).

51. Colquhoun, D. and M. Farrant: The binding issue. Nature 366, 510-511 (1993).

52. Changeux, J.-P., J. Galzi, A. Devillers-Thiéry and D. Bertrand: The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis. Quarterly Reviews of Biophysics 25 (4), 395-432 (1992).

53. Schmieden, V., J. Kuhse and H. Betz: Agonist pharmacology of neonatal and adult glycine receptorA subunits: identification of amino acid residues involved in taurine activation. EMBO J 11, 2025-2032 (1992).

54. Schmieden, V., J. Kuhse and H. Betz: Mutation of glycine receptor subunit creates b-alanine receptor responsive to GABA. Science 262, 256-262 (1993).

55. Schmieden, V., J. Kuhse and H. Betz: A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron 5, 867-876 (1990).

56. Chiara, D.C. and J.B. Cohen: Identification of amino acids contributing to high and low affinity d-tubocurarine binding sites on the Torpedo nicotinic acetylcholine receptor subunits. Biophys 61, A106 (1992).

57. Cohen, J.B., M.P. Blanton, D.C. Chiara, S.D. Sharp and B.H. White: Structural organization of functional domains of the nicotinic acetylcholine receptor. J Cell Biochem Keystone Symposia, T003, p. 217 (1992).

58. Neubig, R.R. and J.B. Cohen: Equilibrium binding of [3H]tubocurarine and [3H]acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions. Biochemistry 18, 5464-5475 (1979).

59. O'Leary, M., G.N. Filatov and M.M. White: Characterization of d-tubocurarine binding site of Torpedo acetylcholine receptor. Am. J Physiol 266, C648-C653 (1994).

60. Sigel, E., R. Baur, S. Kellenberger and P. Malherbe: Point mutations affecting antangonist affinity and agonist dependent gating of GABAA receptor channels. EMBO J 11, 2017-2023 (1992).

61. Khrestchatisky, M., A.J. MacLennan, M.Y. Chiang, W. Xu, M.B. Jackson, N. Brecha, C. Sternini, R.W. Olsen and A.J. Tobin: A novel alpha subunit in rat brain GABAA receptors. Neuron 3, 745-753 (1989).

62. Lolait, S.J., A.M. O'Carroll, K. Kusano, J.M. Muller, M. Brownstein and L.C. Mahan: Cloning and expression of a novel rat GABAA receptor. FEBS Lett 246, 145-148 (1989).

63. Smith, G.B. and R.W. Olsen: Identification of a [3H]muscimol photoaffinity substrate in the bovine gamma-aminbutyric acid A receptor alpha subunit. J Biol Chem 269, 20380-20387 (1994).

64. Sumikawa, K. and V.M. Gehle: Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure. J Biol Chem 267, 6286-6290 (1992).

65. Cockcroft, V.B., D.J. Osguthorpe, E.A. Barnard and G.G. Lunt: Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors. Proteins Struct Funct Genet 8, 386-397 (1990).

66. Amin, J., I. Dickerson and D. Weiss: The agonist binding site of the gamma-aminobutyric acid type A channel is not formed by the extracellular cysteine loop. Mol Pharmacol 45, 317-323 (1993).

67. Sussman, J.L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker and I. Silman: Atomic structure of acetylcholine esterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872-879 (1991).

68. Dougherty, D.A. and D.A. Stauffer: Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science 250, 1558-1560 (1990).

69. Sine, S., P. Quiram, F. Papanikolaou, H. Kreienkamps and P. Taylor: Conserved tyrosines in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform anatonists. J Biol Chem 269, 8808-8816 (1994).

70. Kusama, T., J. Wang, C.E. Spivak and G.R Uhl: Mutagenesis of the GABA rho1 receptor alters agonist affinity and channel gating. Neuroreport 5, 1209-1212 (1994).

71. Kleinberger-Doron, N. and B. Kanner: Identification of tryptophan residues critical for the function and targeting of the gamma-aminobutyric acid transporter (subtype A). J Biol Chem 269, 3063-3067 (1994).

72. Tone, M., S. Pascarella and D. De Biase: Active site model for gamma-aminobutyrate aminotransferase explains substrate and inhibitor reactivities. Protein Sci 4, 2366-2374 (1995).

73. Fuchs, K., H. Möhler and W. Sieghart: Various proteins from rat brain, specifically and irreversibly labelled by [3H]flunitrazepam, are distinct alpha-subunits of the GABAA-benzodiazepine receptor complex. Neurosci Lett 90, 314-319 (1988).

74. Stephenson, F.A. and M.J. Duggan: Mapping the benzodiazepine photoaffinity labelling site with sequence specific gamma-aminobutyric acid A receptor antibodies. Biochem J 264, 199-206 (1989).

75. Fuchs, K.H., D. Adamiker and W. Sieghart: Identification of alpha2- and alpha3-subunits of the GABAA receptor complex purified from the brains of young rats. FEBS Lett 261, 52-54 (1990).

76. Duncalfe, L., M. Carpenter, L. Smillie, I. Martin and S. Dunn: The major site of photoaffinity labeling of gamma-aminobutyric acid type A receptor by [3H] flunitrazepam is histidine 102 of the alpha subunit. J Biol Chem 271 (16), 9209-9214 (1996).

77. Pritchett, D.B. and P.H. Seeburg: gamma-Aminobutyric acid type A receptor point mutation increases the affinity of compounds for the benzodiazepine site. Proc Natl Acad Sci USA 88, 1421-1425 (1991).

78. Smith, G.B. and R.W. Olsen: Functional domains of GABAA receptors. Trends Pharmacol Sci 16, 162-168 (1995).

79. Tomaselli, G., J. McLaughlin, M. Jurman, E. Hawrot and G. Yellen: Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys J. 60, 721-727 (1991).

80. Chien, J., Y. Zhang, G. Akk, S. Sine and A. Auerbach: Activation kinetics of recombinant mouse nicotinic acetylcholine receptors: mutations of subunit tyrosine 190 affect both binding and gating. Biophys J. 69, 849-859 (1995).

81. O'Leary, M. and M. White: Mutational analysis of ligand-induced activation of the Torpedo acetylcholine receptor. J Biol Chem 267, 8360-8365 (1992).

82. Wieland, H., H. Lüddens & P. Seeburg: A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267 (3), 1426-1429 (1992).

83. Korpi, E. and P. Seeburg: Natural mutation of GABAA receptor alpha6 subunit alters benzodiazepine affinity but not allosteric GABA effects. European Journal of Pharmacology 247, 23-27 (1993).

84. Wieland, H. & H. Lüddens: Four amino acid exchanges covert a diazepam-insensitive, inverse agonist-preferring GABAA receptor into a diazepam-preferring GABAA receptor. J Med Chem 37, 4576-4580 (1994).

85. Whiting, P.J., R.M. McKernan and K.A. Wafford: Structure and pharmacology of vertebrate GABAA receptor subtypes. International Review of Neurobiology 38, 95-138 R.J. Bradley and R.A. Harris, eds. Academic Press (1995).

86. Mihic, S., P. Whiting, R. Klein, K. Wafford and A. Harris: A single amino acid of the human gamma-aminobutyric acid type A receptor gamma2 subunit determines benzodiazepine efficacy. J Biol Chem 269 (52), 32768-32773 (1994).

87. Hadingham, K.L., P. Wingrove, B. Le Bourdelles, K.J. Palmer, C.I. Ragan and P.J. Whiting: Cloning of cDNA sequences encoding human alpha2 and alpha3 gamma-aminobutyric acid A receptor subunits and characterization of the benzodiazepine pharmacology of recombinant alpha1-, alpha2-, alpha3- and alpha5-containing human gamma-aminobutyric acid A receptors. Mol Pharmacol 43, 970-975 (1993).

88. Farges, R., E. Joseph-Liauzun, D. Shire, D. Caput, G. Le Fur, G. Loison and P. Ferrara: Molecular basis for the different binding properties of benzodiazepines to human and bovine peripheral-type benzodiazepine receptors. FEBS 335, 305-308 (1993).

89. Wafford, K., C. Bain, K. Quirk, R. McKernan, P. Wingrove, P. Whiting & J. Kemp: A novel allosteric modulatory site on the GABAA receptor ß subunit. Neuron 12, 775-782 (1994).

90. Wingrove, P., K. Wafford, C. Bain and P. Whiting: The modulatory action of loreclezole at the gamma-aminobutyric acid type A receptor is determined by a single amino acid in the ß2 and ß3 subunit. Proc Natl Acad Sci USA 91, 4569-4573 (1994).

91. Dani, J.A.: Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor. TINS 12, 125-128 (1989).

92. Galzi, J. and J.-P. Changeux: Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacol 34, 563-582 (1995).

93. Oiki, S., W. Danho, V. Madison and M. Montal: M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinerigic receptor. Proc Natl Acad Sci USA 85, 8703-8707 (1988).

94. Langosch, D., K. Hartung, E. Grell, E. Bamberg and H. Betz: Ion channel formation by synthetic transmembrane segments of the inhibitory glycine receptor - a model study. Biochim Biophys Acta 1063, 36-44 (1991).

95. Akabas, M., D. Stauffer, M. Xu, and A. Karlin: Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307-310 (1992).

96. Xu, M. and M. Akabas: Amino acids lining the channel of the gamma-aminobutyric acid type A receptor identified by cysteine substitution. J Biol Chem 268, (29) 21505-21508 (1993).

97. Xu, M., D. Covey and M. Akabas: Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys J. 69, 1858-1867 (1995).

98. Xu, M. and M. Akabas: Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor alpha1 subunit. J Gen Physiol 107, 195-205 (1996).

99. Akabas, M., C. Kaufmann, P. Archdeacon and A. Karlin: Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13, 919-927 (1994).

100. Galzi, J., A. Devillers-Thiéry N. Hussy, S. Bertrand, J.-P. Changeux and D. Bertrand: Mutations in the channel domain of a neuronal nicotinic receptor covert ion selectivity from cationic to anionic. Nature 359, 500-505 (1992).

101. Wang, T-L., A.S. Hackman, W.B. Guggino and G.R. Cutting: A single amino acid in gamma-aminobutyric acid rho1 receptors affects competitive and noncompetitive components of picrotoxin inhibition. Proc Natl Acad Sci 92, 11751-11755 (1995).

102. ffrench-Constant, R. T. Rocheleau, J. Steichen and A. Chambers: A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 449-451 (1993).

103. Lee, Y., L. Li, J. Lasalde, L. Rojas, M. McNamee, S. Ortiz-Miranda and P. Pappone: Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys J. 66, 646-653 (1994).

104. Li, L., Y. Lee, P. Pappone, A. Palma and M. McNamee: Site-specific mutations of nicotinic acetylcholine receptor at the lipid-protein interface dramatically alter ion channel gating. Biophys J. 62, 61-63 (1992).

105. Li, L., M. Schuchard, A. Palma, L Pradier and M. McNamee: Functional role of the cysteine 451 thiol group in the M4 helix of the gamma subunit of the Torpedo californica acetylcholine receptor. Biochemistry 29, 5428-5436 (1990).

106. Swope, S., S.J. Moss, C.D. Blackstone and R.L. Huganir: Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J 6, 2514-2523 (1992).

107. Kirkness, E.F., C.F. Bovenkerk, T. Ueda and A.J. Turner: Phosphorylation of gamma-aminobutyrate (GABA)/benzodiazepine receptors by cyclic AMP-dependent protein kinase. Biochem J 259, 613-616 (1989).

108. Browning, M.D., M. Bureau, E.M. Dudek and R.W. Olsen: Protein kinase C and cAMP-dependent protein kinase phosphorylate the ß subunit of the purified gamma-Aminobutyric acid A receptor. Proc Natl Acad Sci USA 87, 1315-1318 (1990).

109. Krishek, B.J., X. Xie, C. Blackstone, R.L. Huganir, S.J. Moss and T. Smart: Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron 12, 1081-1095 (1994).

110. Angelotti, T.P., M.D. Uhler and R.L. Macdonald: Enhancement of recombinant gamma-aminobutyric acid type A receptor currents by chronic activation of cAMP-dependent protein kinase. Mol Pharmacol 44, 1202-1210 (1993).

111. Moss, S.J., C.A. Doherty and R.L. Huganir: Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the ß1, gamma2S, and gamma2L subunits of the gamma-aminobutyric acid type A receptor. J Biol Chem 267, 14470-14476 (1992).

112. Moss, S.J., T.G. Smart, C.D. Blackstone and R.L. Huganir: Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257, 661-665 (1992).

113. Wafford, K.A. and P.J. Whiting: Ethanol potentiation of GABAA receptors requires phosphorylation of the alternatively spliced variant of the 2 subunit. FEBS Lett 313, 113-117 (1992).

114. Wafford, K.A., D.M. Burnett, N.J. Leidenheimer, D.R. Burt, J.B. Wang, P. Kofuji, T.V. Dunwiddie, R.A. Harris and J.M. Sikela: Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires eight amino acids contained in the gamma2L subunit. Neuron 7, 27-33 (1991).

115. Blount, P. and J.P. Merlie: Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly. J Cell Biol 111, 2613-2622 (1990).

116. Gehle, V.M. and K. Sumikawa: Site-directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits. Brain Res 11, 17-25 (1991).

117. Buller, A., G. Hastings, E. Kirkness and C. Fraser: Site-directed mutagenesis of N-linked glycosylation sites on the gamma-aminobutyric acid type A receptor alpha subunit. Mol Pharmacol 46, 858-865 (1994).

118. Revah, F., J. Galzi, J. Giraudat, P. Haumont, F. Lederer and J.-P. Changeux: The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma-subunit: Implication for the alpha-helical organizations of regions MII and for the structure of the ion channel. Proc Natl Acad Sci USA 87, 4675-4679 (1990).

119. Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda and S. Numa: Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645-648 (1988).

120. Görne-Tschelnokow, U., A. Strecker, C. Kaduk, D. Naumann and F. Hucho: The transmembrane domain of the nicotinic acetylcholine receptor contain alpha-helical and ß structures. EMBO J 13, 338-341 (1994).

121. Aprison, M., E. Galvez-Ruano and K. Lipkowitz: Comparison of binding mechanisms at cholinergic, serotonergic, glycinergic and GABAergic receptors. J Neuroscience Research 43, 127-136 (1996).

122. Aprison, M., E. Galvez-Ruano, D.H. Robertson and K. Lipkowitz: Glycine and GABA receptors: molecular mechanisms controlling chloride ion flux. J Neurosci Res. 43, 372-381 (1996).

123. Unwin, N.: Acetylcholine receptor channel imaged in the open state. Nature 373, 37-43 (1995).

[Table of Contents ][Previous Section]